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Structural plates and shells are three-dimensional bodies, one dimension of
which happens to be much smaller than the other two. Thus the quality of a
plate or shell model must be judged on the basis of how well its exact solution
approximates the corresponding three-dimensional problem. Of course, the exact
solution depends not only on the choice of the model but also on the topology,
material properties, loading and constraints. The desired degree of approximation
depends on the analyst’s goals in performing the analysis. For these reasons mod-
els have to be chosen adaptively. Hierarchic sequences of models make adaptive



selection of the model which is best suited for the purposes of a particular analysis
possible. \

The principles governing the formulation of hierarchic models for laminated
plates are presented. The essential features of the hierarchic models described
herein are: (a) The exact solutions corresponding to the hierarchic sequence of
models converge to the exact solution of the corresponding problem of elastiaty
for a fixed laminate thickness, and (b) the exact solution of each model converges
to the same limit as the exact solution of the corresponding problem of elastiaty
with respect to the laminate thickness approaching zero.

The formulation is based on one parameter (3) which characterizes the hierar-
chic sequence of models, and a set of constants whose influence has been assessed
by a numerical sensitivity study. The recommended selection of these constants
results in the number of fields increasing by three for each increment in the power
of 3.

Numerical examples analyzed with the proposed sequence of models are included
and good correlation with the reference solutions was found. Results were obtained
for laminated strips (plates in cylindrical bending) and for square and rectangular
plates with uniform loading and with homogeneous boundary conditions. Cross-
ply and angle-ply laminates were evaluated and the results compared with those of
MSC/PROBE.

Hierarchic models make the computation of any engineering data possible to an

arbitrary level of precision within the framework of the theory of elasticity.
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Chapter 1

Introduction

The use of fiber-reinforced composite materials in structural applications has stim-
ulated considerable research activity in the study of the mechanical behavior of
laminated plates and shells.

Structural plates and shells are three-dimensional bodies, one dimension of
which happens to be much smaller than the other two. Thus the quality of a
plate or shell model must be judged on the basis of how well its exact solution
approximates the corresponding three-dimensional problem. Of course, the exact
solution depends not only on the choice of the model but also on the topology,
material properties, loading and constraints. The desired degree of approximation
depends on the analyst’s goals in performing the analysis. For these reasons models
have to be chosen adaptively.

There are two types of information which are of substantial engineering interest

in the analysis of laminated plates:
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1. The structural response (i.e. load-deflection relationships, shear forces, bend-
ing moments, etc.) is characterized by the fact that laminated composites

typically have very large bending modulus to shear modulus ratios.

9. The strength response (e.g. the conditions under which delamimation occurs,
crack propagation problems, etc.) is characterized by the facts that at the
laminar interfaces the normal and shear stresses are continuous, hence the
shear strains are discontinuous, and stress singularities occur at external

boundares.

Initially, the research efforts were focussed on the development of analysis tools
to predict the structural response of the laminates. Soon it was realized that the
classical plate model, extensively used for homogeneous isotropic materials, led to
considerable error when applied to laminated plates. The reason: the classical plate
model fails to account for shear deformation effects, which are of critical importance
when the materials have very large elastic modulus to shear modulus ratios.

Three-dimensional models are suitable for investigating the strength response
of laminated media, but they are computationaly demanding and not feasible for
practical problems. The alternative was to develop two-dimensional models that
could give reasonable results. Of course what is ‘reasonable’ depends on the goals
of the computation. First-order and higher-order shear-deformation models were
developed to account for the effects of transverse shear strains. The terminology

used in connection with high-order models refers to the level of truncation of terms
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in a power series expansion for the displacements, rather than to the order of the
final system of differential equations. The first-order models are simple but only
adequate in predicting the gross response characteristics of the laminate for large
length-to-thickness ratios. They give poor approximation for thick plates and near
boundaries. Higher-order models are more cumbersome, but give more accurate
results than first-order models. The main limitation of these models is that they
do not allow for discontinuities in the slopes of the deflections at the interfaces of
laminae as predicted by the three-dimensional elasticity solution.

The discrete-layer models were derived to overcome the limitation of shear-
deformation models. They are based on assuming a displacement field which al-
lows piecewise linear variation of the in-plane displacements. They give better
results than shear-deformation models, and yield more accurate interlaminar stress
distribution, even for very thick laminates. In general the number of differential
equations depend on the number of layers in the laminate, making them impractical
for large problems.

The approach developed herein combines the advantages of both, the shear-
deformation models and the discrete-layer models. It allows for discontinuities in
the slopes of the deflections at interfaces, and the number of degrees of freedom
do not depend on the number of layers in the laminate. Unlike any other model,
it also allows the construction of a sequence of models to satisfy the equilibrium

equations to the desired degree of accuracy. In the limt it converges to the fully
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three-dimensional solution. Depending on the goals of computation, the analyst
can select the model that best fits the goals. Choosing progressively higher models,
the computational effort increases, but of course the accuracy in the results is
improved. If only structural response is required, a low-order model is generally
sufficient.

Hierarchic sequences of models make adaptive selection of the model which 1s
best suited for the purposes of a particular analysis possible. The advantages of
the proposed models became apparent when comparing the results obtained from

its implementation with those of the exact three-dimensional solution.

1.1 The Finite Element Method in Two Dimensions

The various plate theories (models) differ in the way the transverse variation of the
displacement components is represented. The transverse variation of displacement
components and the number of fields are decided a priori. The problem s to find the
solution for the in-plane components of the displacement field. The finite element
method is used to find the solution of the resulting two-dimensional problem. The
following notation will be used: The solution domain is denoted by Q and 1its
boundary by I'. An arbitrary displacement vector function defined on {21s denoted
by , its cartesian components by u;, uy, u,. The stramn energy of @ is denoted
by U(i), the energy norm of @, by ||@]| g and the set of functions on 2 which

satisfy the condition ¢ () < o is denoted by E(Q). The potential energy of &
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is denoted by II(Z). A subset of E(§2) characterized by the finite element mesh
A and the polynomial degree of elements p, is denoted by S,(A). The subset of
S,(4\) which satisfies the prescribed kinematic boundary conditions is denoted by
5,(A). The subset of S,(A) which vanishes on those boundaries where essential
boundary conditions are prescribed is denoted by S)(A) and the number of degrees
of freedom, the dimension of 5'1(,0)(A), by N,. The exact solution is denoted by ugx
and the finite element solution is denoted by rg.

Numerous variational principles can be employed for formulating the governing
equations of an elasticity problem. For example, the principle of minimum po-
tential energy, the principle of minimum complementary potential energy, and the
Hellinger-Reissner principle are commonly used. However the most generally used
formulation is based upon the total potential energy of the elastic body which can

be written as:

I1(@) =U(@) - F(d) (L)

where F (@) is the potential of the applied loads. Minimization of II on a space of
admissible functions leads to a satisfaction of the equilibrium conditions. In the
finite element method a finite dimensional space S,(A) C E(Q) is constructed and
11 is minimized on S,(A). The resulting system of linear equations is represented
by

[K]{a} = {r} (1.2)
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where [K] is the stiffness matrix, {a} is the set of coefficients which characterize
the finite element solution and {r} is the load vector which represents the applied
loads.

In this study the displacement formulation of the finite element method is em-
ployed in two dimensions. Proper selection of Sp(A) is important because the
performance of the numerical solution procedure depends on it. Most commonly

S,(A) is constructed by one of the following approaches:

1. In the h-version the errors of approximation are controlled by mesh refine-
ment, that is the size of the largest element, usually denoted by Amax is chosen
small enough so that the errors of discretization are sufficiently small. The

mathematical basis for this is the limit process:

lim ”EEX - ?IFEHE(Q) =0. (13)

hmax—‘o

2. In the p-version the errors of approximation are controlled by increasing the
polynomial degree of elements, that is the mesh is fixed and the lowest poly-
nomial degree assigned to elements in the mesh, denoted by pmin, is chosen
large enough so that the errors of discretization are sufficiently small. The

mathematical basis for this is the limit process:

,lim|Zex — Grellew =0 (1.4)
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3. In the hp-version the errors of approximation are controlled by mesh refine-
ment and increase of the polynomial degree of elements. Therefore the h- and

p-versions are special cases of the hp-version.

Orderly sequences of discretization by mesh refinement, increase of the polynomial
degree of elements, or a combination of both, are respectively called h-, p- and
hp-extensions. The term extension refers to the progressive increase of the number
of degrees of freedom in these processes.

The decision of whether the h-, p- or the hp-version should be used in a specific
case depends on the nature of the exact solution Zgx. Further information related
to the subject may be found in [1].

Finite element models are comprised of three principal parts: Idealization, dis-

cretization and extraction:

1. Idealization. Idealization consists of the selection of the appropriate theory
and the generalized formulation. Examples of theories are the linear the-
ory of elasticity in two or three dimensions, engineering theories of beams,
plates, shells and large displacement-small strain theory. Examples of gen-
eralized formulations are: the principle of minimum potential energy and
the Hellinger-Reissner principle. Idealization, together with the input data,

completely determine the exact solution ugx.

9. Discretization. Discretization creates a family of functions S,(A). In solv-

ing stress analysis problems, users of finite element codes control the space
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S,(A) and thereby the error of approximation. In solving design problems,

users control both gy and S,(A).

3. Extraction. Extraction refers to the procedures used for the computation of
engineering data from the finite element solution. Computation of engineering
data involves the computation of functionals such as stresses and stress inten-
sity factors. We denote the functionals of interest by ®;(irg) (1=12,...,n).
These functionals provide the information on which engineering decisions are
based. It is important therefore that the errors in approximating these func-
tionals be acceptably small in the sense that they will not significantly influ-

ence engineering decisions. In general we would like to have:
|®i(Tex) — Bildre)| < 7ilPi(EEx)] (1.5)
where 7; is the relative error tolerance chosen by the analyst.

The analysis is completed when the computed data pass acceptance criteria set by
the analyst. When the data do not pass the acceptance test then the discretization
is modified, using information generated in the previous cycle of analysis and a new

finite element solution is obtained.



1.2 Plate Models

In an increasing number of engineering applications, especially in the aerospace,
marine and automobile industries, the use of structural components made of lami-
nated composite materials has shown a great potential. The most attractive prop-
erties of the composite materials are the high strength and stiffness to weight ratios
and their excellent fatigue strength, which is combined with ease of fabrication and
resistance to corrosion.

Shear deformation effects are of critical importance in the analysis of laminated
composite plates and shells. For thick laminated forms, or in the presence of lo-
cal discontinuities, such as holes, reinforcements, etc., and at the boundaries, the
transverse components of stress and strain have a strong influence on its strength.
At the boundaries, “boundary layer effects” occur that is, the stress distribution is
substantially different from the stress distribution in the interior.

Because the solution of the fully three-dimensional problem is computationaly
expensive, and not feasible for practical problems, several two-dimensional linear
approximations have been developed. Most of the available methods of analysis
for multilayered anisotropic plates and shells are extensions of the methods ongi-
nally developed for homogeneous isotropic plates and shells, and are based on the

principle of virtual work in conjunction with an assumed displacement field.
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Many laminated plate models have been proposed over the years with vari-

ous degrees of success. In the following sections, a review of the most important

approaches will be presented. For each the review includes:
(a) Description and assumptions;

(b) Displacement field;

(c) Stress-strain law;

(d) Method for obtaining the governing equations;

(e) Advantages and disadvantages.

The notation used is consistent with the one used to present the proposed model
in Chapter 2 for the laminated strip.

Many writers refer to alternative representations of plates and shells as theories.
Thus, in the literature one encounters references to membrane theory, Kirchhoff the-
ory, Reissner-Mindlin theory, etc. It is better and more descriptive to use the word
‘model’ however, since one wishes to model the mechanical response by mathemat-
ical means of various solid objects, one dimension of which happens to be much

smaller than the other two.

1.2.1 Shear-Deformation Models

Most high-order models for laminated plates are extensions of the classical plate

model to account for the effect of the transverse components of strain in the plate.
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The classical Kirchhoff plate model, extensively used in the analysis of thin isotropic
plates, will lead to considerable errors when applied to laminated plates. Since the
transverse shear moduli of modern composite materials are very low as compared
with the in-plane moduli, the transverse shear deformation becomes significant, and
cannot be neglected as in the case of homogeneous isotropic materials. The classical
plate model underestimates deflections and overestimates natural frequencies. For
plates with length to thickness ratio of 10, for instance, the classical plate model
predicts natural frequencies 25% higher than those predicted by shear-deformation
models [2].

In this group of models, there are two main categories: The first-order shear-
deformation models, and the higher-order models. First-order models generally
provide reasonable good results for the structural response of the plate. However
they fail to accurately predict the through thickness stresses at discontinuities.
Higher-order models are more accurate than the first-order models, but also more
cumbersome and computationaly demanding.

Shear deformation models do not account for continuity of the normal and
shear stress components acting on laminar interfaces. Lamunates are represented
as homogeneous, orthotropic materials, with the material properties selected so as
to account for the average axial, shear and bending stiffness of the lanunates.

In the evaluation of first-order plate models, the middle surface of the plate is

assumed to lie in the z — y plane. The two-dimensional domain occupied by the
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middle surface is denoted by  and the the boundary of 2 is denoted by I. The

thickness of the plate is denoted by h and the side surface of the plate is denoted

by S, that is: S =T x (=h/2,+h/2).

The displacement field is assumed to be of the form:

Uy = uz|0($ay)+u1|1(x7y)z
Uy = uy|0($7y)+uy|1($’y)z

U; = Uz (SL‘, y)

where uz0(z, ), us1(Z,y), uyo(z,y), etc. are functions to be determined.

The strain-displacement relations of the small displacement-small strain theory

are used:

 Ous Ougo | Ouwy
© = 5 " or oz’

_ Ouy _ Ouy | Ouyp
YT Ty Ty
¢ _ 8’U,z _ &uzlo _0
F T 9z T 0z
R 6u, &U,y_auro (9Uy0 (9uz|1 0uy|1
Ty = Ty T T Gyl + 5:1:' +z<79—y—+-5:;—)
Ou, Ou, Q0
Yz = —Z_+E}‘=Uz]l+—8?
_ Ouy  Ou, Q20
e = g T TWnt TG,

(1.13)

(1.14)

These models are, essentially, extensions of the classical plate model, which is

discussed first.
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1.2.1.1 The Classical Plate Model

The discussion of the classical plate model will follow the general outline of [1],
and it will elaborate on isotropic plates. The extension to laminated plates will be
included in the evaluation of the higher-order models.

.(a) The classical plate model (CPM), also known as the Kirchhoff-Love model
assumes that “Normals to the middle surface of the plate prior to deformation
remains straight lines and normal after deformation”. This is equivalent to consider
negligible the transverse shear strains, i.e. ¥; = . = 0 in (1.13)-(1.14).

(b) Under these conditions the assumed displacement field reduces to:

Ou,
Ugp = — &B‘” (1.15)
Ou,
uyp = - gy'“ : (1.16)
Assuming transverse loading only, uz0 = uypo =0, and denoting ujo as w:
ow
urll = ——6; (117)
Jw
Uyt = “a—y (1.18)
then (1.6)-(1.8) can be written as:
ow
Ur = —-'5; A (119)
ow
b = - z (1.20)
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(c) The stress-strain relations of linear elasticity, with the assumption that the
stress o is negligible in comparison with o, and oy, are:

E
1-212

E
op = (€z +vey), oy = T2 (ver +¢€y) (1.22)

Try = G')’zy’ Trz = G%:za Tyz = G'sz (123)

where E is the modulus of elasticity, v is the Poisson’s ratio, and G o E /2(1 +v)
is the shear modulus.
In the analysis of plates not the stresses but the stress resultants are of primary

interest. The stress resultants are the membrane forces:

def [TH/2 def [h/? def [Th/2
F, oedz, B[ oyds  Fy=F® /_*h , Tl (129

the shear forces:

h2 hy2
def . def - 9
Q- [ rdz Q¥ [ ned: (1.25)

and the moments:

h/2 h/2
M,qéf—/:ﬂ orzdz, 1’\/Iyd=d—-/—;/2 oy zdz (1.26)
h2
My, =M, &~ /_’; o (1.27)

M,, M, are called bending moments; My, is called twisting moment. From the
strain-displacement relations (1.9)-(1.14), the stress-strain relations (1.22)-(1.23)

and the stress resultants (1.24)-(1.27) we have:

F, = Eh (a“”" +ua“y'°> (1.28)

(1-v2)\ Oz o



o
I

M,,

Qs
Qy

Eh 3uz|0

- \" 3

Ay Or

8“y|0
Oy
Gh (——6“”0 + %>

= —Gh (uzu -+ Buzm)
= —Gh (uy“ + >
Eh3 5uz|1 Ouy“
Ta-) e Ty
- _ Eh3 011.,'1 (9uy|1
12(1 - v?) Yoz Oy
_ G h3 0’11.1‘1 6uy|1
12 \ Oy Oz

)
)
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(1.29)

(1.30)

(1.31)

(1.32)

(1.33)
(1.34)

(1.35)

From the consideration of equilibrium of a plate element of size Az x Ay, we have

F,, = F,; and:

where g(z,y) is the transverse load over the surface of the plate.

OM,
(9:1:

O.MIy
Oz

OF,  O0Fy _ 0

Or 8y
6Fyz oF, _ 0
“or ay -

oQ, O

25 = o)
3sz _

ay QI = 0
8\/[

(1.36)
(1.37)
(1.38)
(1.39)

(1.40)

(d) The governing equations are obtained using the principle of virtual work. The

virtual work formulation is obtained by multiplying (1.36)-(1.40) by test functions
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Uzjo, Vylo, Vzjo, Vzpn and vy, summing and integrating over domain 2. Upon inte-

gration by parts the following equation is obtained:

o v Ov
210 z{0 y|0 Ulylo _
//[ +Fzy< o+ >+Fy 5 ] dz dy
z 6 z
// (Qz—g—'ﬂ +Q, gy"’> dzdy +
// ( 8vzu 3 ty@gzu 3 vazu) dz dy +

31)
// ( 2y ayll _M, 6;'1 - vayll) dz dy
= /Aq Vg0 dr dy + f annm + Ftvqo) dt —

}{Qnuz,o dt — ]{ (Muus + Mg ) dt (1.41)

where )0, Ugo are the normal and tangential components of the vector {vzo vy}
with respect to the boundary.

To obtain the standard form of the principle of virtual work B(u, v) = F(v), the
expressions (1.28)-(1.35) are substituted for Fy, Fy, Qz, Qy, Mz, My, Mzy in (1.41).
In B(u,v), u now represents the trial functions ugo, Uy, Uzjo, Uzj1s Uy, and v
represents the test functions vzj0, vyjo, Vzj0, Vzi1, Vyii- The trial and test functions
and their derivatives are square integrable so that all integrals are properly defined.
Substituting (1.19)-(1.21) into (1.41), the terms containing ¢, ¢y cancel and the

following relationship is obtained:

G S*w v O*w 0w\ v
pff [(01:2 ) o Tl aya 5 T (“ax‘z + ayz) ayz]dxdy

_//qua:dy +?§M,,a -jmvdt

(1.42)
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where: V, & Qn + M, /Ot, and

ER’

def
b= 12(1 — v?)

(1.43)

is the plate constant. The integrals are well defined if w and v have square integrable

second derivatives. Defining:

20 520 2 2
B(w, v) def D//[ﬁwa (8w52v+6w[‘)2v>

52 0z U\ B2 B2 © B2 O
+%fg—j/5 +2(1— )gzgy @828y] dz dy (1.44)
and
Flo) /Aquxdy +j4M,,-g—Zdt - fv,,vdt. (1.45)

The set of functions for which B(u,u) < oo is denoted by E(£2). The statement of
the principle of virtual work depends on the boundary conditions. When tractions
are prescribed on the entire boundary then the principle of virtual work is stated
as follows: “Find w € E(Q) such that B(w,v) = F(v) for all v € E(€2)”.

On the boundary of the plate either w or V;, and either Ow/On or M, are given.
The restrictions on w and Gw/0n are the kinematic boundary conditions. Com-
monly used boundary conditions are: Fixed: w = Qw/0n = 0; free: M, = V., =0;
simply supported: w = 0, M, = 0; symmetry: dw/0n =V, = (; antisymmetry:
same as simple support. Note that in the case of simple support w =0 on [" hence
Ow/8t = 0 also and therefore u; = 0 on S. Thus both tangential displacement

components are zero on S.
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(e) As observed earlier, the classical plate model represents well the overall behavior
of isotropic plates in the interior regions for “large” length-to-thickness ratios. It
leads to considerable error near the boundaries and when analyzing laminated plates

because it fails in accounting for shear deformation effects.

1.2.1.2 First-Order Shear-Deformation Models

(a) The simplest of all the laminated plate models which are an improvement over
the CPM is the Reissner-Mindlin type model, which incorporates the effect of shear
deformation [3}-{4]. The introduction of shear deformation into a laminated plate
model was first accomplished by Stavsky [5], for isotropic layers with the same
Poisson ratios. Whitney and Pagano [6] investigated the application to laminated
plates consisting of an arbitrary number of bonded anisotropic layers, each having
one plane of material symmetry parallel to the central plane of the plate. They
found the deflections of the plate to be dependent upon the selection of the shear
correction factor, and that the stress distribution did not improve for low span-to-
depth ratios over that given by the CPM.

(b) In the Reissner-Mindlin model the assumed mode of deformation is represented
by the displacement components (1.6)-(1.8), and is described as follows: “A plane
section normal to the middle surface of the plate before deformation 1s assumed

to remain plane but not necessarily normal to it after deformation.”. Assuming
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Ugjo = Uyjo = 0 and defining F; = —uz, By = —uyp and w = u,o:
u; = —G:(T,y)z, uy = —ﬁy(:c,y)z, u, = w(z,y) (1.46)

The physical interpretation of 3; and fy is rotation.
(c) Again, the stress-strain relations of linear elasticity, with the assumption that

the stress o is negligible in comparison with o, and oy, is used for each layer.

Oz Qu Gz Qs €z
oy = | Q2 Qo Qas|q €& (1.47)
Try Q16 (s Qss Yy
Tyz Qus Qis] e
)l et o
Trz Qas  Css Vzz
where @Q;; are the coefficients of the material stiffness matrix in the laminate coor-
dinate system. Shear correction factors are used for the transverse shear resultants
as discussed later. The definition of the stress resultants is the same as in (1.24)-
(1.27).
(d) The displacement field (1.46) predicts a uniform shear across the laminae, which
is incorrect. This prompted the introduction of a shear correction factor into the
shear stress resultant. The derivation of the principle of virtual work is based on
(1.41) and (1.31)-(1.35), however (1.31)-(1.35) are modified as follows for the case

of cross-ply laminates:

A, B 95 %,
M, = -<Du ;“+D12 ay"> (Dn 5+ Dn a/;y) (1.49)

M, = - (Dm agrll + Dy ag;“) = (Dlz %ﬁz Dy 5@%) (1.50)



Ou, o, 068 O
1sz = =D 8y“ +—% = Degg (aﬁy +F€E2 (151)
Ou,
Qz = —I‘CG] (uzu + ;:EIO) = —:‘CGl ('—61; +?_j> (152)
Qy = —-kGy (uy” + 6(1;;0) = —~kGy (—ﬁy + %""l;) (153)

where the x is the shear correction factor and:

h/2 h/2
G = /+ st dz, G, = /+ Q44 dz
—h/2 -h/2

Dy = Q,, z, ,7=1, 2, 6.

Various values have been proposed for x. For isotropic plates for example, Reissner
[7] proposed the value of 5/6. In [3] Mindlin considered the propagation of elastic
waves in isotropic plates and concluded that « depends on Poisson’s ratio, and it
“vanges almost linearly from 0.76 for v =0 to 0.91 for v =1 /2”. In practice very
often the value k = 5/6 is used, independently of Poisson’s ratio. Modification of
the shear modulus by a shear correction factor « is a modelling decision commonly
justified by the argument that the assumed linear variation of uz, uy with respect
to z leads to a plate model which is overly stiff in shear. Similar range of values
can be used for laminated plates depending on the material properties [6].

On substituting (1.49)-(1.53) into (1.41) we have:
B(ﬁxa ‘Byu W Py Py U) = }_(S-Q:rs “ys U) (1-54)

where:

08, Opy 08, Op;
+D12<5a: Oy + Jy Ox

+

B(Bz, By, w; @z, @y, v de{ // [Dll
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D2 aﬂya@y +D66 aﬁz‘_}_ ﬁ) a¢r+a@y)]dxdy

Oy Gy Oy Oz Oy Oz
+n//[G1< —&) (00 @z>+

G (a—y . ﬂy) (% - %) | sy (159

Flerno) ¥ [[ qvdady+ 4 (M o + Mugpr — Q v)ds (1.56)

where v, ¢z, ¢, are the test functions.

The commonly used boundary conditions are:

Fixed: 8, =5 =w=0.

Free: M, = My = @Qn =0.

Simply supported:
1. Soft simple support: w =0, M, = M, =0.
2. Hard simple support: w =0, 8, =0, M, =0.

Symmetric: 3, =0, M, =0, @, =0.

e Antisymmetric: Same as hard simple support.

Observe that in the Reissner-Mindlin model simple support can be defined in two
different ways, whereas in the Kirchhoff model only one defimition is possible. In
the Kirchhoff model simple support means hard simple support.

(e) Despite the increased generality of the shear-deformation model, the flexural

stress distribution show little improvement over those of the classical laminated
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plate model. Higher order terms are needed in the power series expansion of the
assumed displacement field to properly model the behavior of the laminates.

The performance of the first-order shear-deformation model is dependent on
the factors used to adjust the transverse shear stiffness. Several approaches have
been proposed for calculating the composite shear correction factors for different
laminates. Most of these approaches are based on matching certain gross response
characteristics, as predicted by the first-order model, with the corresponding char-
acteristics of the three-dimensional elasticity model [8]. The proposed correction
factors are functions of the lamination parameters only. They do not account for
the influence of the loading conditions in the distribution of the transverse shear
strains in the thickness direction. As an attempt to incorporate the actual dis-
tribution of the transverse shear strains in the thickness direction, in calculating
the transverse shear stiffness, a predictor-corrector approach has been proposed by
Noor [9] which is outlined in the following paragraph.

The predictor phase consists of using a first-order shear-deformation model to
calculate the initial estimates for the gross response characteristics of the laminate
(vibration frequencies, average through-the-thickness displacement, etc.) as well as
the in-plane strains and stresses in the thickness direction. An initial set of com-
posite correction factors are required in this phase. Then, the three-dimensional
equilibrium equations and the constitutive relations are used to compute the trans-

verse stresses and strains as well as the transverse shear strain energy distribution in
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the thickness direction. The correction phase consists of calculating the composite
shear correction factors by matching the integral of the transverse shear strain en-
ergy in the thickness direction with that obtained with the first-order model. These
composite correction factors are then used to adjust the transverse shear stiffness
of the laminate to obtain better estimates for the gross response characteristics, as
well as for the distributions of displacements and in-plane stresses in the thickness
direction. The predictor-corrector approach appears to be effective for the determi-
nation of the global and detailed response characteristics of multilayered cylinders

[10], [11].

1.2.1.3 Higher-Order Shear-Deformation Models

To overcome the limitations of the first-order shear-deformation model, higher-order
models that involve higher order derivatives of the transverse displacements were
developed. These models proved to be more accurate but also more cumbersome
and demanding on computational resources. A significant amount of research has
been conducted in this field. For example, Whitney and Sun [12] included one
additional term in each component of the displacement field given by (1.6)-(1.8)
and derived the governing equations from Hamilton'’s principle. Lo, Christensen and
W [13] included one additional term per field as compared with [12] and derived the
governing equations using the principle of stationary potential energy. This model
does not require the use of shear correction factors. The same displacement field was

used by Chomkwah and Avula [14] but they derive the governing equations based
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on the minimization of the total potential energy and using the Lagrange multiplier
technique to constraint the displacement functions to satisfy the stress boundary
conditions. Reddy [15] and Reddy and Liu [16] proposed a similar displacement
field as in [13] and also imposed a parabolic variation of the transverse shear strains
through the thickness to satisfy the zero tangential stress on the surface of the plate.
The principle of virtual displacements was used to derive the equilibrium equations.
The equilibrium requirements are not satisfied at the interfaces. Several survey
papers can be found in the literature of laminated composites (see for instance [10],
[11], [17)).

The model presented by Reddy [15] was selected as representative of the higher-
order shear-deformation models to be evaluated in what follows.
(a) This model accounts not only for transverse shear strains, but also for a
parabolic variation of the transverse shear strains through the thickness, and con-
sequently, there is no need for using shear correction factors.

(b) the proposed displacement field is given by:

Uy = Uzp(Z,y) + un (2,9)2 + U (2, ¥)2* + uza(z, y)2* (1.57)
Uy = Uypol(z,y) + Uy, ¥)2 +uyez, )22 + uys(z,y)2° (1.58)
u; = uyo(z,y) = w(z,y) (1.59)

where uz0, Uz)1, Uyjo, etc. are independent functions. The functions uz2, uz3, Uy
and uy3 are determined using the condition that the transverse shear stresses 7,

and 7, vanish on the top and bottom surfaces of the plate. For laminated plates of
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orthotropic materials, these conditions are equivalent to forcing the corresponding
shear strains to be zero. From the conditions v;.(z = £h/2) = 3.(z = £h/2) =0,

the following relations are obtained:

Ugj2 = Uyjz = 0 (160)
4 Sw

Uz = =375 (uzll + ‘5;) (1.61)
4 Ow

Uyls = — 733 (uy“ + —8—?7) (1.62)

and the displacement field for Reddy’s model thus becomnes

4 2 ow
Uz = Ugo +z [uz|1 - 5 (%) (u,u +5;>] (163)
4 2 Sw
Uy = Uyotz {Uyu—g (}-ZL) (Uyu+5§>} (1.64)
u, = w(x,y) (1.65)

(c) The constitutive equations incorporate the assumption that each layer possesses
a plane of elastic symmetry parallel to the x-y plane. The constitutive equations
for a layer are written in terms of the plane-stress-reduced elastic constants in the
material axes of the layers. After transformation, the lamina constitutive equations

are expressed in terms of stresses and strains in the global coordinates as follows:

Oz Qu Qi Qs €
oy p= Q2 Qn Qx| & (1.66)
Tzy Qlﬁ Q?G QSS Yry

{ Tyz } [Qu Q45} { Tyz }
= (1.67)
Trz Q45 st Yzz
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The stress resultants are defined as in (1.24)-(1.27), but because of the addi-
tional terms in the displacement field selected, five extra resultants need to be

defined. These are:

hJ2 .
R oo 2%, dz, R, = def oo z Ty dz (1.68)

h/2 . h/2 h/2
P’dg/:n 20, dz, Pydzf/—;/2 2oy dz, szdzef/:/z 21y dz (1.69)

(d) As established before, the equilibrium equations are obtained using the principle

of virtual displacements, 1.e.,

/2
/—:/2 // 066z + 0y b€y 4 Toy OVay + Toz 6%z + Ty 6yz) dy dx dz

+//(;q5wdxdy=0 (1.70)

where the integration is performed over the entire domain of the plate. Introducing

strain relations similar to (1.9)-(1.14) and the stress resultants mentioned above,

(1.70) can be written as:

66u1|0 (%u,,“ 4 85’&1“ a bw (96u |0
,//{ Oz +Pz{—W< Or * Ox? )]+F ;

65uy|1 buyy | 06w Obuzo 36uy|0
1
U, +P[ 3 (o) (5 )

Obuz | Obuyn 4 Obuz aéuy“ (92511)
(S S ) P (T 25203
PO e

+R;[ (5uz|1 +a§w)]q6w}d$dy =0. (1.71)
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Integrating by parts and collecting the coefficients of 6uzjo, buyo, bw, dug)y, and duy,

five equilibrium equations are obtained in terms of the stress resultants.

%%Jr?_gyﬂ:o (1.72)
aaf’;y + %I;qzo (1.73)
aé\:{ 6Mry QAR (‘961: +‘9§;y) =0 (1.75)
ag{:uaay o+ thy 3h2(3§y+%§)=0 (1.76)

Finally, the stress resultants are related to the strain components and further to
the generalized displacements, and the solution can be obtained after application
of the boundary conditions.

Reddy’s model requires a total of six boundary conditions per edge. These
include ugs or Fy, Ugpns or Frg, w or Qn, Ow/On or Py, uypy or My, Uyjns OF Mys.
(e) Reddy applied the above model to obtain exact results for simply supported,
symmetric cross-ply rectangular plates. These results were compared with the
three-dimensional elasticity solutions of Pagano [18] and with those obtained using
the first-order shear-deformation model of Ready and Chao [19]. It was shown that
the higher-order model gives stresses that are greatly improved over those given
by first-order shear-deformation model. However the shear stresses obtained were
found to be on the low side of the values given by the three-dimensional solution.
This error may be due to the fact that continuity of stresses across the interfaces

was not imposed.
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1.2.2 Discrete-Layer Models

All laminated plate models discussed above, assume that the displacements vary
through the thickness of the laminate according to a single expression, not allowing
for possible discontinuities in the derivatives of the displacements at the interfaces of
adjoining laminae. In the discrete-layer models the displacement field is expressed
as piecewise linear functions in the thickness direction. Some of the work in this
line is briefly described in the following paragraphs.

Srinivas [20] considered an arbitrary number of layers, and described the dis-
placement field as continuous and piecewise-smooth functions (smooth within each
layer). No shear correction factors were introduced, but the number of fields equa-
tions and edge boundary conditions depended on the number of layers.

Di Sciuva [21] proposed a displacement field which allows piecewise linear vari-
ation of the u, and u, displacements, and constant value of the u, displacement
component. The assumed displacement field also allows the contact conditions at
the interfaces to be satisfied, thus reducing the number of displacements parameters
to five. This model does not require the use of shear correction factors, and the
governing equations are obtained using a variational princple. The normal stress
in the thickness direction is neglected, and as a consequence, local effects, such as
boundary layer effects, geometric discontinuities, etc., are beyond the capabilities
of the model. A multilayered anisotropic flat plate element was developed by Di

Sciuva [22] by making use of this formulation. The finite element is a rectangle
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with 32 degrees of freedom which include extension, bending and transverse shear
deformation. Numerical tests carried out by Di Scuva on two sample problems
show that the element is very efficient in predicting gross response of thin and
thick laminated plate under static loading.

Toledano and Murakami [23] developed a model for arbitrary laminate configu-
rations based upon Reissner’s [24] new mixed variational principle for displacements
and transverse stresses. They assumed a piecewise-linear in-plane displacement dis-
tribution to guarantee continuity of interlaminar stresses. Transverse displacements
are taken to be constant throughout the entire thickness of the plate. Therefore,
shear strains are constant within each layer, but differ from layer to layer. The
transverse stresses are assumed to be quadratic functions of the local thickness co-
ordinate across each layer. The application of Reissner’s new principle results in
automatically yielding the appropriate shear correction factors for the transverse
shear constitutive equations. Numerical results were obtained for symmetric, anti-
symmetric, and arbitrary laminates in cylindrical bending and were compared with
the exact three-dimensional elasticity solutions. A good agreement was observed
between the two sets of results. The main shortcoming of this model is that the
number of field equations and boundary conditions depend upon the number of
layers.

Bhaskar and Varadant [25] also proposed a model using a piecewise displacement

distribution for symmetric laminates subjected to antisymmetric loading. For the
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u, and u, displacement components they selected unknown functions of the in-plane
coordinates, multiplied by pre-defined polynomials of degree three in the transverse
direction and multiplied by the Heaviside Unit Step Function and summing over
the plate interfaces. The variation of u, is assumed to be quadratic in z, and the
same for all layers. The assumed displacement field satisfies the displacement com-
patibility at interfaces and the zero shear condition on the free surfaces of the plate.
Stress continuities at interfaces are also enforced to solve for the functions of the
in-plane coordinates. The principle of minimum total potential is used to derive
the governing equations. The total number of independent variables is four. The
model was compared with the exact three-dimensional elasticity solution of a lami-
nated strip under cylindrical bending for large (L/h = 50) to medium (L/h = 12.5)
length-to-thickness ratios. The agreement between the two sets of results is very
good.

Barbero and Reddy [26] developed a model allowing for piecewise approximation
of the displacements through individual laminae. For the u, and u, displacement
components they assume one function which depends on the in-plane coordinates
r and y, and represent the displacement of the reference plane of the laminate,
and other set of functions depending on z,y and z, which vanish in the reference
plane. These later functions are expressed as a linear combination of undetermined
functions of (z,y) and known functions of z. The number of these later functions

depending on the number of layers. Transverse displacements are taken to be
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constant throughout the entire thickness of the plate. The proposed displacement

field has the form:

u(7,9,2) = u(z,y) +Us(z,y,2) (1.77)
uy(z,9,2) = uy(z,y) +Uy(z,9,2) (1.78)
u(x,y,2) = ulz,y) =w(z,y) (1.79)

where u;(z,7), uy(z,y), us(z,y) are the displacement of a point (z,y,0) on the
reference plane of the laminate, and U, and Uy are functions which vanish on the

reference plane:

Un(z,y,0) = Uy(z,y,0) =0 (1.80)

The functions U, and U, are expressed as:

n

Ur(a:,y,z) = ZUi:’(J:’y) ¢]‘(Z) (181)

=1

a1

Uy(x’yvz) = Uﬁ(‘r’y) ij(z) (1'82)

J=1

where ¢, are any continuous functions that satisfy the condition:
#;(0) =0, j=1,2, ....n (1.83)

In a finite element approximation, ¢; denote the global basis functions.

The equilibrium equations are derived using the principle of virtual displace-
ments, rendering a set of (2n + 1) differential equations, n being the number of
layers through the thickness. The same number of boundary conditions need to

be specified. The application of this model to a two-layer cross-ply plate strip in
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cylindrical bending and to a rectangular plate of three orthotropic layers show excel-
lent agreement with the corresponding three-dimensional elasticity solutions. The
model gives accurate interlaminar stress distributions, even for very thick (L/h = 4)
plates. The main shortcoming of this model is that the number of equations and

boundary conditions depend on the number of layers in the laminate.

1.2.3 Hierarchic Models

The first rigorous proof of the relation between the three-dimensional solution and
the plate model was given by Morgenstern [27] in 1959. The construction of hier-
archic models for homogeneous isotropic plates and shells was discussed by Szabé
and Sahrmann in [28]. Additional discussion and examples are available in {29,
[1], [30], [31]. In this work the principles governing the derivation of a hierarchic
sequence of models for laminated composites are presented. Once again, the ex-
act solution corresponding to each particular model is viewed as an approximation
to the problem of elasticity in which the elastic body is comprised of orthotropic
laminae. The basis for approximation is the degree to which the equilibrium equa-
tions of the problem of elasticity are satisfied. Hierarchic sequences of models make
adaptive selection of the model which is best suited for the purposes of a particular
analysis possible.

The essential features of the hierarchic models are as follows:

1. The exact solutions corresponding to the hierarchic sequence of models con-

verge to the exact solution of the corresponding problem of elasticity for a
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fixed laminate thickness,

3D) HM]|i
lim [[uY — ux™ | 5@ =0

where ¢ represents the ith model of the hierarchic sequence and | - || g(g) is

the energy norm.

9. The exact solution of each model converges to the same limit as the exact so-
lution of the corresponding problem of elasticity with respect to the laminate
thickness (h) approaching zero.

HMNh 3D)
lubre™ — ue® |l e

lim ) B g i=1,2,...
- “uEX“E(Q)

3. When u(g)l?) is smooth:

3D HM)|
Juby) — ul "’nE

D C hi
HM1) ~
1™ | e

where C is a constant, independent of 7; ; is a constant which depends on ¢,

and a4 > o

These requirements are important because, typically, the solution of the problem
of elasticity in the interior regions of the domain can be approximated well by the
Jowest in the hierarchic sequence of models but near the boundaries higher models
are needed.

In order to focus on the essentials, the derivation for the case of laminated strips

is presented first (Chapter 2), and the more general case is presented in Chapter 4.
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Chapter 2

Laminated Strip

As mentioned earlier, hierarchic models for homogeneous isotropic plates and shells
were discussed by Szab6 and Sahrmann in [1]. The hierarchic models proposed in [1]
satisfied the requirements 1 and 3 indicated in Chapter 1, but satisfied requirement
2 only in the case of zero Poisson’s ratio. The modifications needed to satisfy
condition 2 were clarified later by Babuska and Li [2]. Additional discussion and
examples are available in [3], [4]. In this Chapter the principles governing the
derivation of a hierarchic sequence of models for laminated strips are presented.
Once again, the exact solution corresponding to each particular model 1s viewed
as an approximation to the problem of linear elasticity in which the elastic body
comprises orthotropic laminae. The basis for approximation is the degree to which
the equilibrium equations of the problem of elasticity are satisfied.

In order to focus on the essentials, the derivation presented herein is for the case

of laminated strips only. Since plane-strain conditions are considered, this problem



35

represents a particular case of the three-dimensional elasticity problem. The more

general case will be presented in Chapter 4.

2.1 Hierarchic Models for Laminated Composites

Consider the infinite strip shown in Fig. 2.1, consisting of three or more laminae
which are symmetrically arranged with respect to the middle plane. The following

assumptions are made with respect to the the load:
1. The load ¢(z) is antisymmetric with respect to the middle surface.

2. The load g(z) = 0 for |z| > L/2, L is some fixed number.

3. The equilibrium equations are satisfied:

/j: qz)dz =0 /j: q(z)xdx =0. (2.1)

Assumptions (2) and (3) are introduced so that boundary conditions do not
have to be considered. Boundary conditions will be discussed separately. We will
be interested in the limiting process h/L — 0. Observe that fixing L and letting
h — 0 is equivalent to fixing h and letting L — oo.

Let uz(z,y), uy(z,y) denote the displacement field for the infinite strip under

the normal load ¢(z), satisfying the equilibrium equations (with zero body forces):

O,  Orgy 50
N += =0 (2.2)
Oty  Ooy .

B +——0y =0 (2.3)
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Figure 2.1: Infinite strip. Notation.

and with boundary conditions:
oy(z,£h/2) = % o(z) (2.4)
Tey(z, £h/2) = 0. (2.5)
The stress-strain relations of two-dimensional elasticity are used:

o =Ee+ E2€y + E4Afry
Ty = Ezéz + E3Ey + ES'Yry (26)
Ty — Eie. + Esﬁy + E67zy

where the E; are only function of y, and the strains are related to the displacements

(small-strain, small-deformation theory) by:

“ = Bz
Ou -
Ey = —a-gy- (2()
Ouy + Ouy

T T Ty T o
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We now consider a partial Fourier transformation of the problem described by
(2.2)-(2.5). For any integrable function g(z), we can write the Fourier transform
as:

QB) = | q@)e*dz (2.8)

-~ 00

therefore, conditions (2.1) are represented by:

Q(0) =0, d_%_(ﬁ_ﬂ_)\m —0. (2.9)
From (2.8) we find that:
Q'(8) =:8Q(b) (2.10)

that is, the derivatives become multiplications by ¢ 3 in the Fourter transformed

variables. The partial Fourier transformations of u., u, are denoted by:

#(B,y) = /:jux(x,y)e“"’dx (2.11)
wo) = [ ey e (2.12)

-1

Therefore, the strains in the transformed variables are obtained using (2.7) and

(2.11), (2.12):

& = 13¢(8,y) (2.13)
& = v'(By) (2.14)
Yy = 0(By) +i8Y(8,y) (2.15)

where the primes represent differentiation with respect to y. Substituting (2.13)-

(2.15) into (2.6), and considering the case Ey = E5 = 0 (which is the case for
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orthotropic materials when the material axes are parallel with the r —y axes), the
equilibrium equations (2.2), (2.3) can be written as:

~BE¢+iBEY +(Ed) +if(Esyp) = 0 (2.16)
—FEsp +18(Exd) + (Esy’) +18Es¢" = 0 (2.17)
which are the Fourier transformed forms of equations (2.2), (2.3). Further, (2.4)

and (2.5) become:

Q(5) (2.18)

(2.19)

i 8 Ex(h/2) $(B,h/2) + Es(h/2)¢'(B,h/2) =
Es(h/2)¢'(B,h/2) +1i 8 Es(h/2) ¥(B,h/2) =

= I

Note that for any fixed 3, (2.16)-(2.19) is a parameter-dependent boundary value
problem on (—h/2,+h/2), with parameter 5. Solving (2.16)-(2.19), the displace-

ment components i, u, are obtained as the inverse Fourier transform of #(8,y),

W(B,y)-
Formally, (2.16) and (2.17) can be alternatively obtained by assuming the dis-

placement field to be of the form:

U, = ¢(B,y)e'” (2.20)
U, = P(B,y)e’ (2.21)
where U,, U, are complex functions, and both the real and imaginary parts repre-
sent admissible displacements. In such a case, using (2.6) and (2.7) into (2.2) (2.3),

the following equilibrium equations are obtained:

o
0o
(8]
~—

92— BE ¢ +iBEW' +(Eso’) +i3(Es v)'} =0 (2.
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P~ B Eg) +1 3(Exg)' + (Esv’) +i8Es¢'} = 0. (2.23)
These equations must hold for any choice of z. Therefore, they are formally identical

to (2.16), (2.17).

The displacement field minimizes the potential energy functional
M(u) = %B(U, w) — F(u) (2.24)
over the subspace E™(£2):

EMQ) = {a

Uz = JZ_UUIU 6;(y), uy = ;“yu 1/)j(y)} (2.25)

where ¢;, 1; are given functions. If we denote the exact solution of the model of

order n by @py, we select the functions ¢;, ¥; such that the modeling error:

||UEX_; Ugx| () < C(n) b (2.26)
lZEx en o)

i.e., the relative difference between the model of order n (different n; for u, and uy
are possible) and the exact solution in energy norm, is such that oy, is not larger for
any other set of functions @;, ¥;. The optimal functions are those which maximize
the rate of convergence (c,) of the model of order n.

It has been shown in reference [5] that the functions &(3,y), ¥(8,y) admit
an expansion about 3 = 0 with coefficients which are certain functions of y, and
that the ¢;, 1; in (2.25) must be these coefficient functions to maximize oy,. It 1s
also shown in [5], that it is not necessary to use the boundary conditions (2.18),
(2.19), only the homogeneous equations (2.16) and (2.17) are needed to obtain these

functions.
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The functions ¢(3,y) and (3, y) are complex functions of the form:

o(B,y) = ¢a(B,y) +1 (5, y) (2:27)
W(B,y) = (B, y) +116(B,y) (2.28)

where ¢,, ¢ are antisymmetric real functions, and ¥, and v are symmetric real
functions with respect to the middle surface of the strip, i.e. the x-axis. Expanding

#(8,y), (B, y) into a power series with respect to 5:

&(8,y) = [bao(y) +1 oo (y)]+Blda1 (y) +7 d1 (¥)] + 5 [daz(y) +i dra(y)] +- - (2.29)

(B,y) = [Wao(y) 4 Vo)) +BWar (¥) +i v ()] +8° a2 (y) +i ra(y)] + - - (2.30)

On substituting (2.29) and (2.30) into the equilibrium equations (2.16) and (2.17)
and separating into real and imaginary parts we have:

The real part of (2.16) is:

(Esoly) + Bl(Esdn) — (Esm)’ — Eyp) +
+ 52[(E6¢;2)l — (Esym)’ — By, — E1¢a0] +

+ BPl(Esbus) — (Esthna)’ — By — Ei¢a]+---=0. (2.31)
The imaginary part of (2.16) is:

(Estho) + Bl(Esdh) + (Esthao) + Eatiy] +
+ 3*[(Esdhy) + (Estbar) + Eoty — Eyéwo) +

+ /33[(E6¢;>3)/ + (EﬁwaQ)/ + E‘Zwlag - El@bl] +..- = 0. (232)
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The real part of (2.17) is:
(Bsty) + Bl(Est) — Estho — (E2dw)] +
+ B(Esthy) — (Badn) — Esdhy — Estba] +
+ IBS[(E3¢;3)I - (E2¢b2)’ — Esdyy — E61/)a1] +-..=0. (2.33)
The imaginary part of (2.17) is:
(Esthe) + Bl(Esthy) + Esdio + (E2da)] +
+ BH(Eshy) + (Eadar) + Eedyy — Esno] +
+ BUEsths) + (Fadur) + Esdly — Eson] +---=0. (2.34)

These equations hold for any choice of 4. In many practical problems the
material properties are symmetric functions of y, for example, as noted earlier,
the strip may comprise laminae which are symmetrically arranged with respect to
the x-axis. For the sake of simplicity only the symmetric case is considered in the

following.

2.1.1 The Model Characterized by

Setting 4 = 0 in equations (2.31) to (2.34) we have:
(Esdno) =0, (Eedh) =0 (2.35)
(Esg) =0,  (Esyne’) =0. (2.36)

Knowing that ¢ (y) and ¢(y) are antisymmetric and 1a0(y) and o (y) are sym-

metric, and integrating, we have:
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Pao(y) =ao Foy),  deoly) =bo Foly) (2.37)
Va0 = Co, Yro = do (2.38)
where
def 1
Fyly) ¢ /}1 POt (2.39)

Referring to (2.25) the case § = 0 yields:

uz(z,y) = uep(z)Fo(y) (2.40)

uy(x,y) = Uy|o($). (241)

The real and imaginary parts are not linearly independent, hence both lead to the

same functional form. One possible choice for uz1, uyo are constants. For instance:

ur = ao Fo(y) (2.42)

y = (2.43)

and the strain terms corresponding to these displacement components are €, =0,
€, = 0, 7zy = ao Fy where, as before, the prime represents differentiation with
respect to y. This corresponds to constant shear stress, speafically: 7, = ao.
Observe that this displacement field can represent rigid body displacement but
cannot represent rigid body rotation. When Es(y) = Es is constant then this
model is capable of representing rigid body displacement and rotation. This is

because the displacement components

Uy = Cl +CSy (244)
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Uy = CQ - CgJI, (245)

where C,, C,, C; are arbitrary constants, are represented by the model. Never-
theless, the model represented by (2.40), (2.41) is not a member of the hierarchic
sequence of models because it does not satisfy the requirement that the exact so-
lution of each member of the hierarchy must converge to the same limit as the the
exact solution of the corresponding problem of elasticity with respect to A — 0.

This point will be discussed in greater detail in Section 2.4.1.

2.1.2 The Model Characterized by 3!

To find the mode of deformation for the model which satisfies the equilibrihm
equations up to the first power of 3, we differentiate equations (2.31) to (2.34) with

respect to 8 and let 5 = 0. In this case the following equations are obtained:

(Esd) — (Estow) — Eatbyp = 0 (2.46)
(Eehy) + (Esan) + Eatify = 0 (2.47)
(Esly) — Esdhy — (Eadwo) = 0 (2.48)
(Bsth) + Esdlyo + (E26w) = 0. (2.49)

Using (2.38), (2.46) can be written as:
[Es (¢ — w0)] =0. (2.50)
Solving for ¢a1(y) and using the fact that ¢,1(y) is antisymmetric:

Es(d — ¥o) = a1 (2.51)



Y
¢a1 - EG +d0
1
Pa1(y) = a1 f mdt +doy
¢ai(y) = a1 Fo(y) +doy.
From (2.47), using (2.38):
[E6(dh +%w0)] =0
Es(#4, +%w0) = b
b
P = fls -G
op1(y) = b Fo(y) — coy.

From (2.48), using (2.37):
(Estay) =bo + (E2dmo)'-

Integrating once:
Esfy, = by +bo Bz Foly) + fi
and solving for ¥;:

E(t)

t 1
T/Jal(y)=b0fmdt+bofmfb(t)dt+flfmdt-{—cl.

Since the third term is antisymmetric, fi =0. Then,
Yar(y) = bo Fi(y) +c1.
Similarly, integrating (2.49) twice:

v (y) = —ao Fi(y) +d;

(2.52)
(2.53)

(2.54)

(2.60)

(2.61)

(2.62)
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where
def [Vt v Ealt)
Fiy) % K YO A iy B (2.64)
The displacement field in this case is given by:
UI(IE, y) = UI|1(CL') Fb(y) + uz|2(x) Y (265)
uy(x,y) = Uy|0(13) +uy|2($)Fl(y)' (266)

Further discussion of this model is deferred to Section 2.4.2.

2.1.3 The Model Characterized by 3

To find the mode of deformation corresponding to the model which satisfies the
equilibrium equations up to the second power of 3, we differentiate equations (2.31)

to (2.34) with respect to G twice and let § = 0. The following equations are

obtained:
(Eeda) — (Eeyn) — Eady — Endao =0 (2.67)
(Es0lp) + (Estba) + B2ty — Exopo =0 (2.68)
(Exys) — (Expn) — Eedhy — Estbao =0 (2.69)
(Esthy) + (E2¢a1) + Esdlyy — Esno =0. (2.70)

Upon integrating, the following results are obtained:

Pa2(y) = ag Fy(y) +dry + a2 Fo(y) (2.71)

©ro
=]
[8%]
S

Gu2(y) = bo Fa(y) — cry +ba Fo(y) (2.
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and

Ya2(y) = b1 Fi(y) — co F3(y) + 2 (2.73)

Une(y) = —a1 Fi(y) — do Fi(y) +d; (2.74)

Ry % f {E:(t) f [El(t)Fo(t) - ggg t— ‘?: ((tt; Fo(t)] dt — Fl(t)} dt (2.75)
af [V Ext)
Fyy) ¢ f o b (2.76)

Therefore the displacement field can be written in the form:

uz(iv,y) = u,“(:r)FO(y)+uz|2(x)y+uz|3(x)F2(y) (2.77)

uy(2,y) = uyo(r) +uye(z) Fiy) +uys(e) H(y). (2.78)

This mode of deformation satisfies both the real and imaginary parts of the equi-
librium equations up to the second power of 3. By continuing this process, the
equilibrium equations can be satisfied to an arbitrary power of 3. For additional

details, see Appendices A and B.

2.2 The Boundary Layer

The foregoing analysis was concerned with an infinite strip and therefore the bound-
ary conditions did not have to be considered. Terms which can be neglected for

an infinite strip can be very significant near the boundary of a strip of finite size,
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however. Therefore, in the neighborhood of boundaries, the exact solutions of low-
order models can differ very substantially from one another and from the limiting
case, i.e., the exact solution of the problem of elasticity. This sensitivity of exact so-
lutions corresponding to various models in the small neighborhood of the boundary
is called the boundary layer effect or edge effect.

Boundary layer effects are important from the point of view of engineering
analysis because often the goal is to determine moments and shear forces at the
boundary where the solution is model-dependent. An analysis of boundary layer
effects for the Reissner-Mindlin plates is available in [6]. In the case of laminated
plates the problem is even more complicated, due to the singularities caused by the
material interfaces. To account for boundary layer effects, it should be possible to
expand the laminate model near the boundary: The power of 3 near the boundary
should be larger than the one used in the interior regions of the laminate. The
answers to the questions: How much larger it needs to be, and what power of g is
large enough far from the boundaries, are problem-dependent and can be found, in
general, at the end of an adaptive process only.

Hierarchic models provide a framework for adaptive control: Let us rewrite

(2.77), (2.78) in the following form:

ug(z,y) = un(2) fiy) + vep(x) foly) +uzp(z) f3(y) +-- (2.79)

uy(z,y) = uyo(z) + uya(z) g2(y) +uyslz) gsly) +- - (2.80)
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where fi(y) = Fo(y) and fo(y) = oq fi{y) + oy with oy, oy selected such that

f2(y) is orthogonal to fi(y):

[ Ve H(y) faly)dy =0. (2.81)

h/2

Similarly, f3(y) = o1 fi(y) + 2 foly) + a3 Fa(y) with o1, o, a3 selected such
that f3(y) is orthogonal to f1(y) and f»(y), etc. In this way on the kth element
(zk < & < Ti41) We expect:
/ "2dz - 0 (2.82)
Tk
as 1 — oo very fast on those elements where the solution of the problem of elasticity

1s smooth and slowly where it is not smooth. Adaptive selection of models is based

on making measures, such as this, very nearly equal over the entire solution domain.

2.3 Boundary Conditions for Hierarchic Models

The main motivation for using hierarchic models is to make adaptive control over
errors of idealization possible. The sequence of exact solutions corresponding to a
hierarchic sequence of models converges to the exact solution of the model based
on the theory of elastiaty. Since the exact solution depends on the boundary
conditions, proper interpretation of the boundary conditions is important. In engi-
neering analyses the choice of boundary conditions is usually a modelling decision,
l.e., a convenient. simplification of some possibly complicated physical conditions.

In using hierarchic models the choice of boundary conditions must be such that the
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solution of the problem of elasticity exists. Also, since the choice of boundary con-
ditions affects the smoothness of the exact solution, hence the degree of difficulty
encountered in controlling the errors of discretization, if modeling considerations
allow alternative choices then the interpretation leading to the smoother solution
is preferable.

Consider, for example, the problem of enforcing the boundary condition which
allows no transverse displacement but allows rotation of the laminated strip at
(say) = £. In the terminology of structural analysis this is called simple support.
There are several possible interpretations. One possible interpretation is: u (4, y)

is unrestricted and:
Uyo(€) = uy2(€) = uya(8) =+ =0 (2.83)

i.e., the transverse displacement of every point of the strip is zero at z = ¢. Another

possible interpretation is: uz(¢,y) is unrestricted and:

[ ey =0 (2.84)

/2
i.e., only the average displacement in the y-direction is set to zero.

Certain interpretations of simple support are ruled out by the condition that the
corresponding problem of elasticity would not have a solution. Thus the condition
uyo(€) = 0, with uy;(¢) (i =2,3,...) are unrestricted, is generally not admissible
because this would correspond to a point support. Point supports are permissible

as constraints against rigid body displacements and rotations only.
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Analogous considerations apply to other types of boundary conditions. For

further discussion we refer to [3].

2.4 The Limiting Case with Respect to 3 — 0

One of the requirernents for the hierarchic models is that the exact solution of each
model must converge to the same limit as the exact solution of the fully three-
dimensional model when the laminate thickness approaches zero.

In the following Section it is shown that the exact solutions of the models
corresponding to 5° and 3! differ from the exact solution of models corresponding to
B withn > 2, when 3 — 0 unless some coefficients of the material stiffness matrix
are modified. Guidelines are established for modifying the material coefficients such

that the requirement represented by the equation:

() _ D)
lupx xlew g =12, (2.85)

3
TN um

is satisfied. This is a generalization of the rationale used in the construction of the

Reissner-Mindlin model for isotropic strips outlined in [3].

2.4.1 The Model Characterized by 3°

The exact solution minimizes the potential energy with respect to all functions

Uz1, Uyjo for which the strain energy is finite:

2[ /—; [ Up)) VHFy)? + Ee(uzn Fy +uy|0) dy dr —

/jwq Uyjo dT (2.86)
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where the prime on ug);, uyo represents differentiation with respect to z and the

prime on Fj represents differentiation with respect to y. We denote:
e = M ERrd  G= [ E(F)rd (2.87
1—/_:/210 Ys 2—/_:/2 6 (£7)°dy 87)

o= MEra  c=[""Ed 5
3—/_-:/260?/, 4—/_—;/26?% (-88)

Observe that, given the definition of Fj in (2.39), Cy is of the order h%; G, Cs and

C, are of order h. Therefore these constants can be written in the following form:
C, =h* K], Cy, = h K, Cs = h Kj, Cy = h K, (2.89)
The first variation of I with respect to ug; is:
6I(upn) = [: (h3 K gy bugyy + b G uap Sugp +h IS Uylo 6ur|1> dr (2.90)
and the corresponding Euler equation is:
— WK ugy +h I ug +h K uye =0. (2.91)

Similarly, the Euler equation corresponding to the first variation of II with respect
to uy|o 1s:

- h I{4 'U;Zlo - h I(S u;“ = q. (2.92)

If we now apply Fourier transform to (2.91) and (2.92), the following expressions

Urpn 0
AR
UyIO Q

are obtained:
REKE +hKy (EhKG

—1Eh K h K, &




where Uy (€) (resp. Uyo(€)) is the Fourier transform of gz (resp. uypo) and Q&)

is the Fou?er transform of g(x). Solving (2.93) for Uz and Uype:

DE)Uyn=B)@  DEUyp=C)Q (2.94)
where:

D) = €r (KK, - K2)+Eh* K K, (2.95)

B() = —ithK; (2.96)

Cl€) = hIG+ER K. (2.97)

On dividing the first of (2.94) by —i£h I and the second by h K the following

expressions are obtained:

K2 K K K 99
2 T 3 4 13 1 4 —_— 2 !
{E h(l“‘ Kz) O, } i (1+£ g KQ)Q' (2%9)

On performing the inverse Fourier transform, we have:

(I(;(.i\‘t _ I(;;) h ’U;“ [\} 1\4 B3 u ;,;1 = g (2100)
I\l 1{4 R [’ " I\:l )
[\ Ry yIO (I‘4 K ) hu Ugo = 9~ h? 7\-2- q . (2.101)

The significance of (2.100) and (2.101) is that the exact solution satisfies these

equations hence these equations characterize the model corresponding to 3°.

2.4.2 The Model Characterized by 3!

In this case taking the the displacement field given by (2.65) and (2.66), the poten-

tial energy functional is determined in the same way as for the 3° case. Taking the
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first variation of II with respect to each one of the displacement field components
Ug(1, Uzj2, Uy aNd Uyz, and applying the Fourier transform to the resulting Euler

equations, the following expressions are obtained:
I RBE\& +hK, i€hKs hEKE+hKs ih3%(Ki—-Ke) ] (Usn ) (0 )
~iEh Ky hK, € —ihEK, W3E2 Ky Uyo 0

= }
h3 K f2 +h K5 1Eh K,y k3 Ky 52 +h K, ihsf( Ky - K7) U;,_-p j 0

_—ihaf(ﬁ’u - I\’e) h3€2 Ki2 —ihaf( Kis — 1\"7) h5£2 Ky + hSIi'g_ Uy|2 ) Q h2G1 )

(2.102)
where:

S h/2

G = W= /_: . By(F)dy (2.103)
12

Cs = WKs= /_: . Ba(R) Fdy (2.104)
h/2

C7 = h3 I(7=/:/2 EgyF{dy (2105)
h/2

C = WK = /: Bty (2.106)
h/2

Co = WK, = /:/i Es (F/)dy (2.107)
h/2

Cl() = hsli'l():/:;/z EG (E)Zdy (2108)
h/2

C, = h3[(11=ﬁ/2 E (F))Fy dy (2.109)
h/2

Ca = WKy= /_: ' B Ry (2.110)

Fi(h)2) = B* G,. (2.111)

Solving (2.102) for Uy, and Uy:
D) Uy =B(6)Q; D) Uy =C(§)Q (2.112)

where:

D& = Eh2D+8h0D,+ &0 Dy (2.113)
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i€hS By + i€ W(By + B3 Gy) +1£° h?(By + Bs Gh) (2.114)

s}
—_
I
~

Il

= R Li+&h (Ly+ L3Gr) + & R (La+ Ls G1) + € R (Ls + L7 Gh). (2.115)

Q
o
}

Assuming that the solution is sufficiently smooth, and letting h — 0 for £ # 0 we

can neglect higher order terms in the above expressions:

D(&) _—'54 hS D3, B(g) =Z£h5 Bl, C(f) =h5 L] (2116)
where:
Dy = (K? - Ky Ky) (Ko Ky — K;’) (2.117)
B = I{g(f(z Ky - 1(32) (2118)
L1 = —Ky(K; Ky - K3). (2.119)

On substituting into (2.112), and performing the inverse Fourier transform, the

following equations are obtained:

I
TT;% - Kg> hully = g (2.120)
A7 -\ B3, IV

- T&-—; - I\g h Uyo = (2121)

and similarly for the other two equations:

R A
(K3 nglxgggxglu K3) iy = g (2.122)

where AK = K7(Ky Ky + K3 K7 — Ky K — K3 Ki2) + Ko( Ky K5 — K3 K3). Since

q(z) satisfies the equilibrium equations on |z| < L/2 and g¢(z) = 0 for |z} > L/2,
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on integrating (2.122) it is clear that uz; = 0 for |z| > L/2. The same is true for

uy|2:
: T dsd
Uy () = T Ky — Ks Ko [ K7) P /_m/_mq(s) s dt
1 :
T (K- K Ko[Kn) BB /_ y, 10 (- B) (2.124)

For the integral identity used in (2.124) see, for example, eq. (10), p. 225 in [7].
In fact, since the strain energy is bounded, all functions u; and uy; (1 =0,1,.. )
have to decay as |z| — oo, With the exception of ugz; and uye, which contain the
rigid body displacement and rotation terms. Therefore the ug, and uyo are the
dominant functions. Observe that these are the two functions which appear in the

model characterized by 3°, see equations (2.100), (2.101).

2.4.3 The Model Characterized by 32

When the equilibrium equations are satisfied up to the second power of 3, the
displacement field is given by (2.77) and (2.78). Note that Fi(y) and F3(y) are
both of order k2. This is the first model for which the expressions representing the
mode of deformation (see equations (2.77) and (2.78)) contain the complete set of
coefficients up to the second power of A. The Euler equations for the dominant

functions u,z and uy)e are as follows:

(I(Qo - I‘;’g) 3 'U,Zir_; =q (2125)

—"(I(QO - [\’8) h3 U,ﬁ(/) =g (2126)
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where:
Ko=— [ B (F)2d (2.127)
0 =73 [ 4, VS o
and thus, using (2.106);
.1 th/2 (E2

The procedure for obtaining these equations is the same as the procedure used

in Sections 2.4.1 and 2.4.2 but the details are omitted here.

2.4.4 Hierarchic Models Characterized by 3° and 3!

On comparing equations (2.120), (2.121) with (2.125), (2.126) it is clear that the
model characterized by 5' does not converge to the same limit as the 3? model
with respect to h — 0. The reason for this is that the model characterized by 5
does not contain the complete set of coefficients in h? for the u, expansion. In
order to satisfy the requirement represented by equation (2.85), it is necessary to
substitute Ky for K2/ Ky in (2.120) and (2.121). Thus, through the simple device of
modifying coeficients which represent material properties, the hierarchic sequence
of models is extended “downward”: Solving for only four unknown functions of a
single variable (i.e., uz1(x), uzp(z), uyjo(T), uy(z)) the same limiting solution is
obtained with respect to the k — 0 as if the problem of elasticity had been solved.

On comparing equations (2.100) and (2.101) with (2.125) and (2.126), it is seen

that, for the model characterized by 3° to converge to the samne limit as the model
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characterized by 3? it is necessary to have:

K K, _ KKy _ .
(m -m)m, 1t = = (K~ ) (2.129)
and
. K2 K K, .
(4 — —= = = —( K — 9
1\4 [\,,2 O, 1{2 (1&20 1(3) (...130)

The condition K> Ky/K3; — K3 = 0 (which is the same as the first of (2.130)) is
satisfied if Es(y) is replaced by a constant value. From the point of view of the
limiting solution with respect to A — 0 it is immaterial which constant value is
used since the essential coefficient, (K — K3), is independent of Eg, (see equa-
tion (2.128)). For finite values of k, on the other hand, it is important to use some
“reasonable” replacement for Es. For example, we may replace Eg by its average
value E, defined as:

L ger 2 2
Eﬁdzfzﬁ Es dy. (2.131)

Another possibility is to select the replacement for Es(y) such that the function

Fi(y) defined by (2.39) will be unchanged at y = h/2:

Fy(h/2) = h/zld-h 2.132
2= [ g = 5E (2132

and thus we may replace Eg(y) by the harmonic average, denoted by E:

et (2 21 -1 )
Eﬁ_(h / Eﬁ(y)dy) . (2.133)

The harmonic average is less than or equal to the average. Therefore, using Es

instead of E has the effect that the shear stiffness is generally smaller, which is
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analogous to introducing a shear correction factor, less than or equal to unity, in
the Reissner-Mindlin model for isotropic plates.

Observe that when Fg(y) is replaced by a constant value, which is one of the
requirements for the model to be a member of the hierarchy, then Fy(y) and y are
not linearly independent, and we can write Fy = y instead of (2.39), hence from

(2.87) to (2.89):

KK KK 1 e, ;
K K W /_:/2 By dy (2.134)

and therefore conditions (2.129) and (2.130) are satisfied when the material constant
E, is replaced by (E, — E}/E;) for each lamina. That is, the correct limiting case
can be obtained for the simplest model, i.e., the model corresponding to 3°, through
modification of the material properties.

That these modifications provide the correct limiting case for laminated strips

is demonstrated by numerical examples in next Chapter.
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Chapter 3

Solution of the Strip Model

This Chapter is devoted to the numerical verification of the models developed
in Chapter 2 for the laminated strip. First, a description of the finite element
implementation is discussed. The dimensional reduction accomplished by proper
selection of the transverse functions made it possible to uncouple the z and y
parts of the fields. Therefore the numerical solution requires only to solve a one-
dimensional problem. Second, examples are presented in which the ability of the

hierarchic sequence of models is demonstrated.

3.1 The Numerical Problem

In this Section the numerical problem for the computation of functions uz(z),
Uga(T)ye - s Uyio(@), Uypa(), ... for the hierarchic sequence of models is formulated.

The formulation is based on the p-version of the finite element method. Consider
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the strain energy per unit width associated with the kth element of the laminate

of length 4.

1 e/ 2 n+l
Up =3 [: (n; /: (0262 +0yey +sz%y)dy>d$ (3.1)

where m is the number of layers in the kth element.
The functions uz; and uy; in (2.77), (2.78) are written in terms of the basis

functions as follows:

p+l

Usji = Z;ag")Nj(E) (3.2)
J=
Pl

Uyli = Z;bg")Nj(f) (3.3)
j=

where ag-i) and bg-i) are constants, p is the polynomial degree of the z-direction
expansion, and N;(£) are basis functions for the (p + 1)-dimensional space SP.
By definition, SP is the space of polynomials of degree p on the standard element

Q, & (€] —1< €< +1). Specifically, the following basis functions are used for

st —

SP:
MEe=F mE=E NE@=6.© =340+

where ¢;(€) is defined in terms of the Legendre polynomials F;_,

aﬁj(g):,/z—%l /: P(t)dt, j=2,3.... (3.5)

For details we refer to [1]. The kth element is mapped onto the standard element

by the transformation:

1- 1+
5 §1‘k T g1?k-+1 (3.6)

r=
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from which:

dr = fﬂ%ﬂ de = %dg (3.7)

where ¢, ¥ z4,1 — zx. Using equations (2.7) and (3.2), (3.3) and the condition that

the equilibrium equations are satisfied up to the second power of 3, we have:

( {aV}
o)
€ N0 ERV 0 + RN 0 ()
€y o= 0 0 0 F|N] 0 B'IN] | S {a( N
b 2
) L gy mw gRW B ERILL
L {63} )
(3.8)
or, in short hand;
{e} =[Q{a}. (3.9)
The strain energy for the nth lamina of the kth element is:
1 £ [Yn+l
Un =5 a] A ﬁ (@) (EI"M[Q] dy dx {a} (3.10)
or, in matrix form:
t, = 5 1a] (K" (@) (311)

where [E]("“‘) is the material stiffness matrix for lamina n of the kth element, and

is given by: B0 b E{Mo

[E](nlk) — Egnik) Ev:(;nlk) EgnUc) (312)
E:(;ﬂk) Evén[k) Eénlk)
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and [K]™* is the stiffness matrix for lamina n given by:

(K K Ki K Kis K]
Kp K Ku Kis K
Kz Ku Kss Kie
(K| = (3.13)
SymL I<44 I{45 I<45

Kss  Kse

Kis

L

The first submatrix of (3.13) is computed as follows:

K] = EW% [ () v dy
+E0 & f /” " 2y{N’}LN dy d¢
+E("“‘)£" /+ /y 2y{N} |N'|dy de
+EMDE g" f /"’ (N}|N] dydé (3.14)

Evaluating the integrals in the y-direction, and defining:

K = f N N d, (3.15)

NI};” =/_: N; N; dE, (3.16)
[ = f NN de (3.17)
1) 1 147 ’

we can write [/{};] in the following way:

[KII] =37 E(n[k) (y131+1 - 3/?;) [Kst] + El)" Eyl'k) (3/721+1 - 3/12;) ([Lst] + [Lst]T)

+% EM 0 by [ M), (3.18)
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The other submatrices in (3.13) are defined similarly (see Appendix C). The
size of each submatrix is (p + 1) (p 4+ 1). The number of submatrices depends on
the number of terms in the expansion of the displacement field. For example, for
(3 there are 21 independent submatrices. Finally, the stiffness matrix of the kth
element of the laminate is the sum of the stiffness matrices of each lamina in that

element. Thus:

[K® =5 [K]™  k=12,..., M (3.19)

n=1

where M is the number of elements in the mesh. The strain energy of the kth

element can be written in matrix form as:
Uk(T) = %La | [K]® {a} (3.20)

where |a/| is the vector of the unknown coefficients of uz;, uy)i.

Writing the displacement components in the form (2.79), (2.80) and orthogonal-
izing the functions which represents the transverse variation of the displacement
components, as in (2.81), serves to reduce the condition number of the stiffness

matrices.

The potential energy functional (i) is defined as follows:
(@) =u(w) - F(a) (3-21)

where (%) = 1L, Uy(T) is the strain energy of the laminate, 7 () is the potential
of the external loads, and @ are the displacement functions expressed in terms of the

unknown coefficients a;, b;, as indicated in (3.2) and (3.3). The functions uz, Uy



which minimize the potential energy of the system are found by setting

@ _

o (3.22)

The potential of the external loads per unit width of the laminate can be written
as:

F(@) = /F (Toue + T uy) dz (3.23)
where T, and T, are the tractions applied to the outer surfaces of the laminate in
the x- and y-directions respectively. Considering the case of antisymmetric loading,

T, =0, and using the mapping (3.6), we can write:
¢
F(@) = / T, uy dx (3.24)
Fay=5 [ 5 ) (e i) de+g [ =8 (6 -h2)de (329)

Using the expansion (2.77), (2.78) and the mapping (3.6), the potential of the

external forces can be written in matrix form as follows:

F(@) = a) {R} (3.26)
where { R} is the load vector (see Appendix D for details). Substituting (3. 20) and
(3.26) into (3.21):

=3 LaJ [K]{a} - la] {R} (3-27)

and, after applying the conditions (3.22), we get:
[K]{a} - {R} =0 (3.28)
which is the system of simultaneous linear equations from which the coefficients of

the unknown functions u,; and u,; are computed.
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3.2 Examples

Two representative model problems are discussed in the following. For the first
model problem the solution is smooth. For the second model problem stress singu-

larities occur at the boundaries.

3.2.1 Model Problem 1: The Infinite Strip

Consider an infinite strip composed of perfectly bonded orthotropic layers, sym-
metrically distributed with respect to the middle plane, i.e. the x-axis (Fig. 3.1).
Two cases will be discussed in the following, in one case the number of layers is 3

in the other the number of layers is 5.

[ © ]I

h| 4—-=0 = = - - St X

y —o BT
NS S B 0, T T T N G N O

Figure 3.1: Model problem 1: Notation for the case of three layers.
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The body is assumed to be in state of plane strain with respect to the zy
plane. Antisymmetry conditions are imposed at r = 0 and symmetry conditions
are imposed at x = ¢/2. These boundary conditions are equivalent to a simply
supported finite strip of length £, which is symmetrically loaded (with respect to
z) about z = £/2. Uniform load is applied as a normal traction to the top and
bottom surfaces of the strip. All layers in the laminate are of equal thickness ¢,
and are of a square symmetric unidirectional fibrous composite material possessing
the following stiffness properties, which simulate a high-modulus graphite/epoxy
composite:

Ep =25.0 x 10° psi Er =1.0 x 10° ps:
Grr =05 x 108 psi Grr =0.2 x 10° psi
vit =vrr =0.25

where L indicates the direction parallel to the fibers, T is the transverse direction,
and vy is the Poisson ratio (i.e., vy = —err/€eLL, where err, € are, respectively,
the normal strains in the directions 7' and L). These material properties were
selected from reference [18].

For the three-layer laminate the L-direction coincides with the r-direction in
the two outer layers, while the T is parallel to the r-direction in the central layer.
For the five-layer laminate the L-direction coincides with the z-direction in the
central and in the two outer layers, while the T is parallel to the z-direction in the

other two layers. This arrangement of laminae is designated as 0/90/0/90/0.
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The functions of main interest for this problem are the longitudinal and trans-
verse stresses (0; and 0,) at x = £/2, the shear stress 7y at 2 =0, the deflection
u, at = = £/2, and the horizontal displacement u, at z =0.

In order to establish a reference solution which can be regarded as being suf-
ficiently close to the exact solution of the problem of elasticty, the problem was
solved using the finite element program MSC/PROBE ! and an experimental pro-
gram in which the algorithm described in Chapter 2 is implemented. In the ref-
erence solution obtained with MSC/PROBE each layer was discretized as a two-
dimensional plane strain element with orthotropic matenal properties. Three or
five finite elements were used and the solution was obtained for p ranging from 1
through 8. For all L/h ratios the estimated relative error in energy norm was below
1% at p = 8. The solution corresponding to p = 8 will be used as the basis for
comparison. The solutions corresponding to the proposed hierarchic models were
obtained using only one laminated element. The polynomial degree was varied from
1 through 8 and the equilibrium equations were satisfied up to powers of § ranging
from O to 3.

The model that satisfies the equilibrium equations up to the zeroth power of 3

was modified as indicated in Section 2.4.4. The transverse shear modulus of each

IMSC/PROBE: User’s Manual, The MacNeal-Schwendler Corporation, 1600 S. Brentwood

Blvd., Suite 840, St. Louis, Missouri 63144.
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layer was made equal to the harmonic average Es. In the case of three layers:

B =3 (Ezl_’ + 52;2,—))—1 (3.29)

and E, for each layer was substituted for by (E, — E/E;). We will denote the
modified model characterized by 3° with 32,, to differentiate from those cases where
the unmodified 3° results are presented.

The model characterized by 3! was also modified according to the description
in Section 2.4.4, and will be denoted as 8" since no results are presented for the

unmodified case.

The following normalized quantities are defined to present the results:

— def Ur(e/Q’y) g ‘g gl(_e/_z_y_) T d___ef -sz—(o’—y—) (330)

UZ‘ - ] ) pa
q y q Y q
_ gef Erus(0,y)
T (3.31)
3
0, & 100 Er b3 u, (£/2,0) (3.32)

gt
where g is the applied traction and ¢t is the thickness of each lamina.

The non-dimensional vertical deflection U, of the beam is plotted against the
L/h ratio in Fig. 3.2 for the three-layer laminate, and in Fig. 3.3 for the five-layer
laminate.

It is seen that for large L/h ratios all models yield similar results. As L/h
decreases, the 3 model underestimates the deflection while the 3 ! model is very
close to the exact solution. For 32 and 3 the results are virtually identical with

those of MSC/PROBE for the entire range of L/h values. The ratio between
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(E, — E2/E3) and E} is only 0.9 for the top and bottom layers and 0.94 for the
central layer, so that the influence of the modification of the material properties in
the values of the deflection is almost negligible for all L/A ratios. To emphasize the
influence of the material properties in the results for the 5° model, Fig. 3.4 shows
the central deflection of the three-layer laminate for different material properties,
selected such that the ratio (E; — E2/Es)/Ey = 0.7 for the outer layers, while Eg
was made constant and equal to the harmonic average (see equation (3.29)). It is
seen that the solution corresponding to the 3° model converges to a different limit
than the other models as L/h — co when the adjustment of the material properties
is not performed. Finally, Fig. 3.5 indicates that if £ is not modified at all, the
3° model converges to zero as L/h — 0.

The results shown in Fig. 3.6 indicate that for large L/h, the solution of &2,
which is equivalent to the first-order shear-deformation model, gives a good repre-
sentation of the actual displacement variation. As L/h becomes smaller, the effect
of transverse shear becomes increasingly important and the linear approximation
shows a significant deviation from the reference solution. The 3! solution gives
much better results, even for very small L/h ratios. For 3% and 3} the improve-
ment is even greater, especially for small L/h ratios. See Figures 3.7 and 3.8 for
the three-layer laminate and Fig. 3.9 for the five-layer problem.

The same situation is true for the longitudinal stress o, as shown in Figures 3.10

and 3.11 for the three layer problem and in Fig. 3.12 for the five-layer laminate.
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The shear stress distribution was obtained directly from the solution vector
using equation (2.6), and also by integrating the equilibrium equation (2.2) and
imposing the stress free condition at the top and bottom surfaces. The direct
calculation gives good results only for high powers of 3, regardless of the L/h ratio
(see Figures 3.13, 3.14 and 3.15), while integration of the equilibrium equations
yields very close approximation for low powers of 3 when L/h is large and for high
powers of 3 when L/h is small (see figures 3.16 and 3.17). Appendix E includes
a detailed description for the calculation of engineering quantities from the finite
element solution.

Finally, Fig. 3.18 shows the non-dimensional transverse stress distribution &,
for L/h = 4 that was computed from the solution vector using equation (2.6).
It is seen that the solution for 4 and /3* give accurate results, especially at the
interface between layers. The original material properties were used in computing

the stresses for the cases 52 and 3.
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Figure 3.2: Model problem 1: Central deflection for the three-layer laminate.
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Figure 3.3: Model problem 1: Central deflection for the five-layer laminate.
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Figure 3.4: Model problem 1: Central deflection for the three-layer laminate. For

the outer layers: (E; — E2/E;)/E, =0.7.
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Figure 3.5: Model problem 1: Central deflection for the three-layer laminate.

Comparison of 3° vs. 8", (n=1, 2, 3).
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Figure 3.6: Model problem 1. The function #z(0,y) for L/h = 20. Three-layer

laminate.
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Figure 3.7: Model problem 1: The function i;(0,y) for L/h = 10. Three-layer

laminate.
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Figure 3.9: Model problem 1: The function i,(0,y) for L/h = 4. Fivelayer

laminate.
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Figure 3.11: Model problem 1: The function (¢ /2,y) for L/h = 4. Three-layer
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Figure 3.12: Model problem 1: The function &,(£/2,y) for L/h = 4. Five-layer

laminate.
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Figure 3.13: Model problem 1: The function 7.4(0,y). Direct computation for

L/h =10. Three-layer laminate.
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Figure 3.14: Model problem 1: The function 7z (0,y). Direct computation for

L/h =4. Three-layer laminate.
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Figure 3.15: Model problem 1: The function 7z4(0, y). Direct computation for

L/h = 4. Five-layer laminate.
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Figure 3.16: Model problem 1: The function 7z(0,y) computed by integration of

the equilibrium equation for L/h = 10. Three-layer laminate.
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Figure 3.17: Model problem 1: The function 7;,(0, y) computed by integration of

equilibrium equation for L/h = 4. Three-layer laminate.
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Figure 3.18: Model problem 1: The function &,(¢/2,y) for L/h = 4. Three-layer

laminate.
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3.2.2 Model problem 2: The Cantilever Beam

The laminated strip of the previous example is considered again but with different
boundary conditions. At z = 0, both the horizontal and vertical displacements
are set to zero (clamped edge), while the end z = ¢ is free (Fig. 3.19). At z =0
singularities occur at the top and bottom surfaces, and boundary layer effects are
dominant near the clamped edge. At z = ¢ singularities occur at the interfaces. Of
interest is the performance of the hierarchic model near the clamped edge and at
the free edge.

The reference solution for this problem was again obtained using MSC/PROBE.
The finite element mesh, shown in Fig. 3.20, consisted of 30 elements. The mesh
was graded in geometric progression towards the singular points. At p = 8 the
estimated relative error in energy norm was less than 0.5%. At p = 8 the total
number of degrees of freedom is 1,783. Changing the location of the clamped edge,
the same mesh was used to evaluate the singularities at the free edge.

The solution with the hierarchic model was obtained using only one element for
the polynomial degree varying from 1 to 8, and the power of 3 from 0 to 3.

Fig. 3.21 shows the end deflection of the beam as a function of the degrees of
freedom for L/h = 10. The solution for 3, differs by 9.7% from the solution by
MSC/ PROBE, but for 5! the difference is only 1.22%.

Normal and shear stress distributions were computed at different locations along

the beam. At z = 0 the exact values of o, and 7, are infinity at the top and
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Figure 3.19: Model problem 2: Notation.
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Figure 3.20: Model problem 2: Finite element mesh for the reference solution
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bottom surfaces. There are no singularities at the laminar interfaces. The solutions
obtained by means of the proposed hierarchic models exhibited good convergence
characteristics in terms of the normal and shear stresses at this Section, with the
exception of the neighborhoods of the stress singularities at r/h=0, y/t ==£1.5.
The results are shown in Figures 3.22 and 3.23.

At z = h/3, i.e., at only one lamina thickness away from the singularity, the
normal stress distribution is in excellent agreement with that of MSC/PROBE for
all powers of 3 larger than zero (see Fig. 3.24).

The shear stress distribution requires higher powers of 3 to approach the ref-
erence solution. At = = h/6 (half the thickness of one layer) the solution corre-
sponding to 3° gives accurate results for both methods (direct computation and
integration of the equilibrium equations) as shown in Figures 3.25 and 3.26.

At = = h the shear stress computed directly from the solution vector is accurate
only when the equilibrium equations are satisfied up to the third power of 3. When
they are computed through integration of the equilibrium equations, the results are
accurate for all powers of 3 equal or greater than one (see Figures 3.27 and 3.28).

At the free end (z = £), large stress gradients occur at the laminar interfaces.
Figure 3.29 shows the normal stress o, at z = ¢, while Figure 3.30 show the stress
distribution at a very short distance from the free edge (z = 0.997 £). Note that the

performance of the hierarchic sequence very close to the free end is very satisfactory.

co
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Figure 3.21: Model problem 2: End deflection.
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Figure 3.22: Model problem 2: The function F:(0,y).
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Figure 3.23: Model problem 2: The function 7zy(0, y).
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Figure 3.24: Model problem 2: The function F:(h/3,y).
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Figure 3.25: Model problem 2: The function 7zy(h/6,y). Direct computation.
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Figure 3.26: Model problem 2: The function %.4(h/6,y) computed by integration

of the equilibrium equation.
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Figure 3.27: Model problem 2: The function 7;4(k,y). Direct computation.

Y/t
1.5
1 =
05 f
I
|
o r 1
f For x/h=1
|
05 F \ — MSC/PROBE
! Beta 1
1 r : -— Beta2
—— Betal
_1‘5 L i 1
0 3.5 7.0 10.5 14.0
TAU-XY/q

Figure 3.28: Model problem 2: The function 7;,(h,y) computed by integration

of the equilibrium equation.
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Figure 3.29: Model problem 2: The function &,(¢, y).
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Figure 3.30: Model problem 2: The function 5,(0.997¢, ).
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3.3 Conclusions

o The derivation of a hierarchic sequence of models for laminated strips was
outlined and their performance was demonstrated on the basis of the degree
to which the equilibrium equations are satisfied. The powers of the parameter
83, representing the degree to which the equilibrium equations are satisfied,

have been used to identify members of the hierarchic sequence.

o The proper choice of a model from the hierarchic sequence for a particular
application is problem dependent, that is, depends on the exact solution of
the corresponding three-dimensional problem, the goals of computation, the
degree of precision required, and the method by which the data of interest
are computed. In general, the solution of the problem of elasticity in the
smooth interior regions is very close to the solution corresponding to the
lowest member of the hierarchy, whereas the solution near the boundaries is

more complicated and thus requires the use of higher models.

o In the interest of computational efficiency, the hierarchic sequence of mod-
els has been extended downward to include the models characterized by 3°
and 3'. This requires a modification of material properties, which is analo-
gous to the generally accepted modification of material properties used in the
Reissner-Mindlin model for homogeneous isotropic plates. In fact, the model
characterized by /3 is the Reissner-Mindlin model, generalized for laminated

composites, when the modified material properties are used. In the special
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case, when the shear modulus is independent of y, the hierarchic model is the
Reissner-Mindlin model. The shear correction factor can be assigned arbitrar-
ily since the requirements set for hierarchic models are satisfied independently

of the shear correction factor.

The hierarchic framework described in Chapter 2 for laminated strips, and
illustrated by examples in this Chapter, allows the development of reliable
predictive capabilities for the structural and strength responses of structural
components made of laminated composites. The more general case of lami-

nated plates is addressed in the two following chapters.
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Chapter 4

Laminated Plates

This Chapter describes the formulation of hierarchic models for laminated plates.
As in the case of the laminated strip, this formulation is based on one parameter
(8) which characterizes the hierarchic sequence of models, and a set of constants
whose influence have been assessed by a numerical sensitivity study. This approach
has been adopted in order to limit the rate of increase of fields such that the number
of fields added per model is always three.

The analysis is restricted to mid-plane symmetric laminated plates, i.e., when
there is a lamina above the geometrical mid-plane at the same distance from the
mid-plane and having identical orientation and properties for each lamina below
the mid-plane. For such a symmetrical stacking sequence there is no coupling
between membrane and bending terms. However, the normal stress-twist curvature
coupling terms increase the complexity of the analysis by a significant measure when

compared with the laminated strip evaluated in the previous chapters.
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Numerical examples analyzed with the proposed sequence of models show good
correlation with the reference solutions. Results were obtained for square and rect-
angular plates with uniform loading and with homogeneous boundary conditions.
Cross-ply and angle-ply laminates were evaluated and the results compared with

those of MSC/PROBE.

4.1 Models for Laminated Plates

Consider an infinite flat plate of constant thickness A composed of thin layers of
orthotropic elastic material perfectly bonded together. Each layer (lamina) pos-
sesses a plane of elastic symmetry parallel to the z —y plane. The laminae are
symmetrically arranged with respect to the middle surface of the plate (i.e., the
z — y plane). The load g(z,y) is antisymmetric with respect to the middle plane,
and q(z,y) = 0 for |z > a, |y| > b, with a and b some fixed numbers. Let a =1/a
and v = 1/b, and further let:

3 = min(a, ) (4.1)

Based on the arguments outlined in Section 2.1, we write the displacement field

in the following form:

U(z,y,2) = ¢(B,2)emHY (4.2)
Uy(z,y,2) = $(B,2)ePm) (4.3)
U(z,y,2) = p(B,z)eltmy (4.4)
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where U, Uy, U,, are complex functions, and both the real and imaginary parts rep-
resent admissible displacements, and ¢, 1, p are the partial Fourier transformations

of the displacement components u,, uy, ,:

¢(;sz) = ¢a(ﬁvz)+i¢b(ﬁ’z) (45)
$(B,2) = (B, 2) +i(8,2) (4.6)
p(B,2) = pa(B,2) +1p(B,2) (4.7)

where @, @3, Vs, ¥ are antisymmetric real functions, and p, and py are symmetric
real functions with respect to the middle surface of the plate (laminate). The
parameter m is included to asses the influence of the z- and y-directions in the
solution corresponding to the transverse (or z) direction.

The strain components in the transformed variables corresponding to the dis-

placement field given by (4.2), (4.3) and (4.4) are:

& = 560: — i Bm g ei fm+) (4.8)
¢ = %%y =i Bop el Amz+y) (4.9)
&, = % = p/ el Bme+y) (4.10)
i = G 2 = i8(0 +my)e e (411)
de = 22 2 (g i p) ) (412)
Se = %L;y + a(;y = (¢’ +i8p)etdima+) (4.13)

where the primes represent differentiation with respect to z.
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Let %, § be the material (lamina) coordinates for any layer rotated an angle ¢

with respect to the global (laminate) coordinate system (z, y, z) about the z-axis.

The stresses and strains in the rotated system can be written in terms of the global
quantities as:

{5} =[T1{e}, {8 =[T}e (4.14)

and the stress-strain relations for each lamina in the local system are:

{z} =[Cl{&} (4.15)

where [C] is the lamina material stiffness matrix in the lamina coordinate system
(Z, §, z) which contains only nine nonzero terms because there are three mutually
perpendicular planes of elastic symmetry:

Ch C2 Caa 0 0 0]
Cp Cy 0 0 O

Cy O 0 0
€] = (4.16)

Sy1ml. C44 0 0

Css O

Cs |




and [T is the transformation matrix:

m? n 0 0 O 2mn ]
n” m* 0 0 0 -2mn
0 0O 1 0 O 0
[T1= (4.17)
0 0 0 m —-n 0
0 0 0 n m 0
-mn mn 0 0 O m? — n? |

where m = cos8, n =sind. Combining (4.14) and (4.15) the stress-strain relations

in the laminate coordinate system for any layer can be written as:

{o} =TT [C][T]{e}- (4.18)

Defining

(71~ [C](T] (4.19)

@]

as the transformed lamina material matrix, equation (4.18) can be written as:

s Qun @12 Gz O 0 Ge] [ €
gy Qn Qun 0 0 Qn||e
g; QBS 0 0 QBG €;
{ Yy = . (4.20)
Tyz sym. Q44 Q45 0 Yyz
Tzz Q55 O Yz
{ TIy J L QSG 4\ ’ny J

Note that Q] has thirteen stiffness constants in the global system because there is

only one plane of elastic symmetry (the one perpendicular to the z-axis).



95
The equilibrium equations with zero body force components are given by:

80, , Oy, O

ettt e =0 (4.21)
Oray | B0y  Omys _
Gttt e =0 (4.22)
Ory  Ory 00, _
=t o T =0 (4.23)

Substituting equations (4.8) to (4.13) and (4.20) into (4.21) to (4.23) the fol-

lowing Fourier transformed form of the equilibrium equations are obtained:

{(=B*[(m? Qi1 +2m Q15 + Qes) ¢+ (m? Qus +m (Qr2 + Qss) + Qa26) ] +
1 B[(mQus + Qse) p' + (Qus p) + (M Qss p)] +

(Qus %' + Q55 ') Jertme+y) =0 (4.24)

{=B*[(m? Q16 +m Q12 + Qes) + Q2s) ¢ + (Qa2 +2m Qa6 +m? Qes) ¥ +
1 8[(Qas +m Qss) p' + (Qua p) + (M Qus p)'] +

(Quv’ + Qus 0') }e M+ =0 (4.25)

{~B(Q1s +2m Qss +m? Qss) p] +
1 B[(Qus +mQus) ¥’ + (Qus +mQss) ¢ + (M Qs +Qse) O) +
((Qa3 +mQss) ¥)'] + (@5 p) } 229 = 0. (4.26)
Expanding $(3, z), (3, z) and p(B, 2) into a power series with respect to 3:

HB,2) = [ba0(2) + 1 90(2)] + B[¢ar(2) + ig1(2)] + B [Da2(2) + idwa(2)] +--- (4.27)
WB,2) = [Wao(2) + i%s0(2)] + Blwar(2) + i9m(2)] + B [aa(2) + iPpa(2)] +-00 (4.28)

P(B,2) = [pao(2) + i pso(2)] + Blpar(2) + ipn(2)] + B [paz(2) + ippa(2)] 4+ (4.29)
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On substituting (4.27), (4.28), (4.29) into the equilibrium equations (4.24),
(4.25), (4.26) and separating into real and imaginary parts we have:

The real part of (4.24):

(Qustao + @ssde)’ + Bl(Qustbay + Qssdar)’ — (mQus + Qse)pgo —
((Qss +mQss)pro)’] +
+ Fl(Qus¥iz + Qssaz)’ — (M Qus + Qse)ph —
((Qss +mQss)on)’ —~ (m’ Qu +2m Qus + Qos)da0 —

(m? Que +m (@2 + Qes) + Qo) tbao] +--- =0 (4.30)

The real part of (4.25):

(Quathao + Qusbao) + Bl(Quatbar + Qusday)’ — (Qos +m Qas)pgo —
((Qus +mQus)pro)’] +
+ B(Quatbe + Qusdaz)’ ~ (Qos + m Qse) oy —
((Qss +mQus)on1)’ — (m* Qus +m (Qr2 + Qss) +

(26)Pa0 — (@22 +2m Qos + m? Qs6)Wa0] +- - =0

(4.31)
The real part of (4.26):

(@s3plo) + Bl(Qsspsy) — (Qua +mQus)iiyg — (Qus +mQss) Dy —
((m Qs + Qss)Pr0)’ — ((Q2z +m (36) )] +
+ 52[(6233,0;2)' — (Qus +m Qus )y — (Qus +mQss) by —
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(mQus + Qs6)n)" — ((Qas +m Qse)tm)’ —

(Qaa +2m Qus +m? Qs5)pa0) +--- =0. (4.32)
The imaginary part of (4.24):

(Qustio + Qssdpo) + Bl(Qustny + Qssdy)’ + (M Qus + Cas)pae +
((Qus +mQss)pac) ] +
+ B((Qustyz + Qssdry) +(m Qs + Qas)pm +
((Qus +mQss)par)’ — (m? Qu1 +2m Q1 + Qos b0 —

(m? Qus +m(Qr2 + Qos) + Qae)thbo] +--- =0 (4.33)
The imaginary part of (4.25):

(Quthy + Qustlo) + Bl(Quattyy + Qusdin) + (Qas +m Qas)pao +
((Qas +mQas)pa0) ] +
+ B(Quathiz + Qusdry) + (Qus +mQse)pm +
(Qus +mQus)pa)’ = (m* Qu +m(Quz + Qss)

+Qa6)n0 — (Qz2 +2m Qs + m* Qee)thro] +--- =0

(4.34)

The imaginary part of (4.26):

(Qs3pto) + Bl(Qsspp) + (Qas +mQus)zo + (Qus + M Qss)Pg0 +
((mQus + Q36)dan)’ + ((Q2s + m Qs6)¥a0) '] +
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+ B Qaspi) + (Qus +mQus)gy + (Qus +mQss)da +
((m Qs + Qs6)Pa1)’ + ((Qas +m Qz6)ar)’ —
(Qua +2m Qs +m? Qss)pow] +--+ =0 (4.35)

These equations hold for any choice of 3. Solving for each power of 3 we obtain

the transverse shape functions as described in the following Sections.

4.1.1 The Model Characterized by °

Setting 3 = 0 in equations (4.30) to (4.35) we have for the real parts of the equi-

librium equations:

(Qustao + Qssbg0) = 0 (4.36)
(Quathag + Qusa0) = 0 (4.37)
(@x3p20) = O (4.38)

The solution of the above system requires six arbitrary constants. Knowing that
$a0(2), Yao(2) are antisymmetric and pgo(2) is symmetric, the number of arbitrary

constants reduces to three. Integrating, we have:

_ z Q4 - 2 Qs R
bol) = @ [ Gotord=h | Gagoapd ¢4

_ z Qss _ ? Qs
wol) = b [ grotprdi-a [ gattopds (440)

pao(z) = ©o (4.41)

which can be written as:

$ao(z) = ao Fa(z) +bo Ka(z) (4.42)
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Yao(2) = boGalz) +a0 Kalz) (4.43)

pao(2) = co. (4.44)

Similarly, solving the imaginary part of the equilibrium equations, we get:

dao(2) = do Fa(z) +e0 Kal2) (4.45)
Ya(z) = e Galz) +do Kal2) (4.46)
pao(2) = fo (4.47)
where
_ [ Qa4 .
Fie) = | Gus 08 (448)
_ e |
Gale) = | 0 oz (4.49)
Kuz) = - L mdz. (4.50)

The real and imaginary parts are not linearly independent, hence both lead to
the same functional form. The mode of deformation corresponding to 8 = 0 can

therefore be written in the following form:

w(z,y,2) = tul(z,y) Falz) +da(z,y) Ka(z) (4.51)
uy(2902) = is(59) Ga(2) + dale.y) Ka(2) (452
uy(z,y,2) = Us(z,y). (4.53)

This mode of deformation contains five fields, 4, (z, y), 42(z,¥),-- -, us(z, y), which

are all real. To reduce the number of fields we impose additional constraints to
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reflect the correlation existing between the integration constants o, b or do, € In

(4.42), (4.43) and (4.45), (4.46). That is:

ﬁ‘z(x’y)znﬁ‘l(xay)v ﬁ3($7y) =nﬁ‘4($7y)

(4.54)

where n is an arbitrary constant. The displacement field (4.51)-(4.53), can be now

written in the following way:
uz(xa Y Z) = {Ll(x’ y) [FA(Z) + nI(A(z)]
w(2,,2) = a(e,9) [1Ga(2) + Kal2)]

’U,z(:L',y,Z) = "&5(.’1,‘, y)

which can be rewritten as:

uz(ac,y,z) = U](.’L‘,y)Fz)(Z,TL)
uy(z,y,2) = w(z,y)Golz,n)

UZ(.’E, Y, Z) = Ug(:lf, y)
where

F(zn) = Falz) +nRalz / QMMQ;nQCSisd

Go(z,n) = nGa(z)+Ka(z) = b OuQss — QX

7 nQss — Qas d=

(4.55)
(4.56)

(4.57)

(4.58)
(4.59)

(4.60)

(4.61)

(4.62)

Note that this model does not depend on the value of the constant m; only depends

on the constant n. The influence of these and other constants in the solution of

laminated plates is addressed in the next Section.



101

When Qu, Qus, Qss are constant through the thickness, this model is capable of
representing rigid body displacement and rotation. A similar situation was realized
for the 3° laminated strip model in Section 2.1.1. Unless the material properties are
modified as discussed later, this model does not satisfies the condition of converging

to the same limit as the problem of elasticity as h — 0.

4.1.2 The Model Characterized by 5!

To find the mode of deformation for the model which satisfies the equilibrium
equations up to the first power of 3, we differentiate (4.30) to (4.35) with respect

to 8 and let 3 = 0. In this case we have for the real parts:

(Qustity + Qssdl ) — (m Qs + Qse)pho — ((Qus +mQss)pro)’ =0 (4.63)

(Qutby + Qusdln) — (Qas +m Qss)pho — ((Qua +m Qus)pwo) =0 (4.64)
(Qa3pl) = (Qua +m Qus )iy — (Qus + 1 Qss) Dty —

((m Q13 + Qs6)p0)’ — ((Qas +mQs6)t0)” =0. (4.65)

Upon integration, we have:

(ba}(z) = o FA(Z) + b I(A(Z) +mz (4.66)

i

Ya1(2) by Ga(z) + a1 Ka(2) + 2 (4.67)

pa1(2) = o +doHa(z,m) +eo Hg(z,m). (4.68)
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Similarly, solving the imaginary part of the equilibrium equations, we get:

dn(z) = diFa(2) +e1 Ka(z) —mz (4.69)
1/)1,1 (Z) = € GA(Z) +d1 I(A(Z) 4 (470)
pnlz) = -fi—ao Ha(z,m) - b Hp(z,m) (4.71)

where Fu(z), Ga(2), Ka(z) are defined in (4.48), (4.49), (4.50) and Ha(z,m),

Hp(z,m) are given by:

Ha(z,m) = Az mz+ (m Qi + Qss) FAS;Z‘*‘ (Qas +mQss) Ka(z) dz (4.72)
Hp(z,m) = ,[ z+ (Mm@ + Qss) I"A(Z?)?,:' (Qas + M Qss) Ga(2) dz. (4.73)

The mode of deformation corresponding to the ' model can be written in the

following form:

wlz,y,z) = wlz,y) Fa(z) + iz, y) Ka(z) +us(z,y) 2 (4.74)
Uy(x’ Y, Z) = 1:{'4(1:» y) GA(Z) + ﬂ5(1"’ y) I{A(z) + '&'G(I‘v y) z (475)

Uz(.’L', Y, z) = ﬂ7(1‘7 y) + ﬁ'S(xa y) HA(Z’ m) + ﬁ'Q(xﬂ y) HB(‘Z’ m) (476)

This mode of deformation now contains nine fields, @(z, y), Ua(z,y), - - - Uo(,Y)-
Again, to reduce the number of fields we impose additional constraints as in the

case of the 3° model:

do(z,y) =nialz,y),  a(z,y) =nis(z,y), lo(z,y) = sts(z,y) (4.77)
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where n, s are arbitrary constants. The displacement field (4.74)-(4.76), can now

be written in the following way:

u,(x, Y Z) = 111(.’13, y) [FA(Z) +n I{A(Z)] + {"3(:57 y) z (478)
uy(z,y,2) = us(z,y) [nGalz) + Ka(2)] + sz, y) 2 (4.79)

wlz,y,2) = dr(z,y) +is(z,y) [Halz,m) + s Hp(z, m)) (4.80)

which can be rewnitten as:

u,(x, y,z) = ul(xay) Fb(Z,TL) +U4(.’L‘, y)z (481)
uy(2,9,2) = ua(z,y) Go(z,n) +us(z,y) z (4.82)
us(z,y,2) = us(z,y)+ ug(z,y) Ho(z,m, s) (4.83)

where Fy(z,n), Go(z,n) are defined in (4.61), (4.62), and Hy(z,m, s) is given by:

Ho(z,m,s) = Ha(z,m)+ sHp(z,m)

_ /2 (m+s) 2 + (m Qs + Qas) Fo(2,9) + (Qa3 + MQ36) Go(2,9) . (4.84)
A Q3 o

This mode of deformation, which satisfies the equilibrium equations up the first
power of 3, depends on three parameters m, n, s, and has a total of nine fields

(three more fields than the 5° model).

4.1.3 The Model Characterized by

To find the mode of deformation for the model which satisfies the equilibrium
equations up to the second power of 3, we differentiate (4.30) to (4.35) twice with

respect to 3 and let 3 = 0. Upon integration of the resulting differential equations,
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we have for the real part:

da2(z) = 1 Fa(z) + 2 Kalz) +mz+ao Fg(z,m) + by Fc(z,m) (4.85)

Yaa(2) = 2 Ga(z) +c1 Ka(z) +2+a0Gp(z,m) + by Ge(z,m)  (4.86)

p2(2) = fo+ai Ha(z,m) + by Hp(z,m) + Hi(z,m) (4.87)
where
M(z,m) Qus — Mp(z,m) Qss )
- — mHa(z,m)) dz (4.88
Fg(z,m) A ( OO — 0L m Ha(z,m) ) dz (4.88)
Na(z,m) Qua — Np(z,m) Qa5 )
= Hp(z, dz (4.89
Fo(z,m) A ( o on — mHg(z,m))d> (4.89)
, Mp(z,m) Qss — Ma(z, m) Qas )
= — Hy(z, d 4.90
Gazm) = [ o a(zym))dz (4.90)
Np(z,m) Qss — Na(z,m) Qss
Gelz,m) = — Hpy(z, ) dz (491
cem) = [ (et an slzm))dz - (491)
z (m 2Q13+2mQ36+Q23) 49
= 92
Hizm) = | o d (492)
and
My(z,m) = /2 [(Qn +2mQie + m? Qgs — (MmQua + Q36)E'Ql'5—+%> Fa(2)
0 33
+(Q26 +m(Qr2 + Qes) + m* Q16 — (Q23 + sze)m—Ql—Q%Qﬁ> Ka(2)
———ng+ Q36 } dz (4.93)
33
Ma(zm) = /)‘z [(Q% + m(Q12 + Qes) + M* Q16 — (MQu3 + Q36)%_LQ:—Q§) Fa(2)
+{ Q2+ 2mQas +m? Qos — (Qaz + mQae)Qiga—T'Qﬁ> Ka(2)
_st ngss mz] d= (4.94)
Na(z,m) = A’z [(st +m(Qz + Qes) + m? Q16 — (mQi3 + QSG)Q%Z_Q%> Gal(z)

+ (Qn +2mQie +m? Qes — (MQ13 + st)-m—Ql-é—z-%) Ka(z2)

_Qist+ mQs Z}mQ“ z] dz (4.95)
33
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Np(z,m) = ‘[ KQ% +2mQas + m* Qs — (Q23 + sze)Qw) Gal(2)

Qs
+ (st + m(Q12 + Qee) + M Qs — (M Q3 + st)-%%anﬁaﬁ) Ka(2)
Qs+t mQss
o z} dz (4.96)

The mode of deformation corresponding to the 3? model can be written in the
follovs)mg form:
u(2,9,2) = ia(z,y) Fa(2) +da(z,y) Kal2) +da(z,y) 2 +
is(z,y) Fa(z,m) +1is(z,y) Folz,m) (4.97)
uy(z,y,2) = ts(z,y) Gal(2) +ir(z,y) Ka(z) + Us(z,y) 2 +
tg(x,y) G2z, m) + tio(z, y) Gelz,m) (4.98)
uiz,y,2) = daa(z,y) +di(z,y) Halz,m) +dus(z,y) Hp(z,m) +
e Hi(2,m). (4.99)
This mode of deformation now contains fourteen fields: @i(z,y), ..., 4a(z,y)-

Again, to reduce the number of fields we impose additional constraints as in the

cases of the 3 and 3' models:

ﬁg(.’E,y) = nﬁl(xvy)v ﬁe(l'»y) = nﬂ?(x, y) (4100)
ﬁ5(l‘) y) = t’l:L4(.7}, y)a ﬁ]o(x,y) = t’llg(I, y) (4101)
dys(x, y) = sta(z,y) (4.102)

where n, s, t are arbitrary constants. The displacement field (4.97)-(4.99), can be

written in the following way:

ua(z,y,2) = l(x,y)[Falz) +n Ka(2)] +is(z,y) 2 +
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(2, y) [Fa(z,m) +t Fo(z,m)] (4.103)
wy(2,y,2) = in(z,y) [nGal2) + Ka(2)] +iis(x,y) 2 +

to(z,y) [Ga(z,m) +t Ge(z, m)] (4.104)
us(2,y,2) = dn(z,y) +ia(z,y) [Ha(z,m) + s Hp(z,m)] +

7114 H1 (Z, m) (4105)
which can be rewritten as:

ur(z,y,2) = ui(z,y) Fo(z, 1) + ua(z, y) z +ur(x, y) Fr(z,m, 1) (4.106)

uy(z, 7, 2) us(z,y) Gol(z,n) +us(z,y) z + us(z, y) Ga(z,m, t) (4.107)
u(z,y,2) = us(z,y) + ue(z,y) Ho(z,m, s) +us(z,y) Hi(z,m) (4.108)

where Fy, Go, Hy, H) have been previously defined, and

Fi(zmt) = Fg(z,m)+tFc(z,m)
= A (‘w"(z’m’gﬁgszivggm’“Q“—mHO(z,m,t)) dz  (4.109)
Gi(z,m,t) = GBg(z,m)+tGe(z,m)
= [ (N"(Z’m’%iz;flgg’m’t)Q“"’—Ho(z,m,t)>dz (4.110)
and
Mo(z,mt) = Ma(z,m)+t Na(z,m)

I

1;2 [(Qll +2mQie + m? Qes —(mQu3 + Qm)m%%—%) Fo(z,1)

+ (st 4 m(Quz + Qos) +m? Qas ~ (Qas + mczss)@%;—‘g—ﬂ Go(= )

—(m-}-t)ﬂ-@é—tgsﬁz] dz (4.111)
33
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No(zym) = Mp(z,m)+tNp(z,m)
[ [(Qm £ m(Qra + Qso) + 2 Qs — (MQuy + w%—%) Ryl 0)
+ (sz +2mQo6 + m* Qs — (Qa3 + mQas)Q—?%zﬁs—s) Go(z,t)
~(m+1) 2&5—3’:@ z] dz. (4.112)

This mode of deformation satisfies the equilibrium equations up to the second
power of 3, and comprises nine fields and four parameters m, n, sand f. By
continuing this process, the equilibrium equations can be satisfied to an arbitrary

power of 3.

4.2 The Limiting Case with Respect to 3 — 0

One of the definitive properties of a hierarchic sequence of models is that each
member converges to the same limit as the exact solution of the corresponding
three-dimensional problem as h — 0. The exact solution minimizes the potential
energy with respect to all functions ui(r,y), 1 =1, 2,... for which the strain energy
is finite. The limit for each plate model is obtained in a similar way as done for

the laminated strip. The process can be summarized as follows:

1. Start with the expression of the potential energy for the plate:

1 oo h/2
H:.Z. ,— [ /:;/2 (O’rez+O’y6y+0'z€z+Txy’Yzy+Tzz7xz

+Tyz‘7yz>d$dydz=/+oo/_M q(z,y) us(z,y, h/2) dz dy. (4.113)
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For a given plate model the stramn components are computed from the corresponding
displacement expressions, the strains and stresses are written in terms of the dis-
placements and its derivatives, and integrated through the thickness (z-direction)
to obtain the material coefficients. These coefficients form the laminate material

stiffness matrix E]. Rewriting the potential energy in terms of [E]:

=% A([D]{“})T [E] [D] {u} dxdy - / ﬂ)q(w,y) ui(z,y, h/2) dedy (4.114)

where [D) is the differential operator matrix relating the strains and displacements,
and {u} denotes the displacement vector function. In the case of the 3° model, the

potential energy expression is:

= 2/_';/__:0[&(812) +2Eza“‘a”2+E3(81;2> +E4(%1;‘) +

g Es(a’“) +E7(3“3> +2E8‘98“‘*86“3+Eg(6“3) +

Oy Oy oz 3y
Fuou +2 Evy g ug + Erp 12 +2E13%”‘ 86“’ 2514%-1%’2 +
2E15%u2 %“‘ +2E,6‘95\“2 %“2 +2Enw 86“3 +2 Ergug 68—“3- +
2 Eouy %“5 +2Ezou2%l;]dxdy—
/j[: qlz,y) us(z,y, h/2) dz dy (4.115)

where:

h/2 5 h/2

E = /_';/2 Ou F2dz, E, =/_+h/2 Ow FyGodz  (4.116)
h/2 h/2

E = f Qss G dz, Ei= /_: B Qs Fy dz (4.117)

h/2

h/2
B = [ QuFGds E= /: . QnGld: (4.118)
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Y O d E= " 0ud 4119

Bo= [, Qwds v= [ Qudz (4.119)
h/2 h/2 .

Bo= [ Qud Bo= [ Qu(F)dz  (4120)
h/2 ¢ e h/2 "2

Ell = /-—;/2 Q45 FO GOdZ, E12 = /2 Q44 (GO) dz (4121)
h/2 \ h/2

E, = /_'; ', QuFtds, Eyf= /_: L QuRGd:  (4122)
h/2 h/2

E15 = /_-:/2 Qes Fo GodZ E16= _h/2 Q26G3d2 (4123)
h/2 , k(2 ,

Bn = [, QuFids Es = /_’; . QusGhds (4.124)

E "2 0w El d M 0 Gld

19 = _h2 Qus Fg dz Ey —/_—:/2 Qas Go dz. (4-125)

For the 3! model, there are 55 nonzero terms in the laminate material stiffness
matrix and 138 nonzero terms in the case of the 3% model.

9. The Euler equations are obtained by taking the vanation of the potential energy
with respect to each of the field functions wi(z,y), (1 =1, 2, ..., ny), ny being

the total number of fields in the model.

oIl ol oIl
STI(w) = T 6 + b1 + oSty =0 4126
( ) Ou; Ou,i ; 6u,~,y y ( )
where
Ou; _ Ou;
Uiz = (—9;, Uiy = a—y (4127)

Using Fourier transform, the Euler equations are transformed and the system of

linear equations in the transformed field variables Ui(€,n) is constructed:

[4]{U} = {R). (4.128)
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The matrix [A] depends on the material stiffness matrix [E], and on the Fourier
variables € and 7, and {R} is the load vector obtained from the transformation of

the potential of the external forces.

3. The elements of [E] are computed for different stacking sequences and the
system of equations are solved for U;. Note that uz(z,y) is the equivalent to the
displacement component uyo(z) in the laminated strip, which was shown to be the

dominant function.

D(&, ) Us=B(¢, 1)@ (4.129)

where

D, n) = D&+ Dyén+Dsn*+ Dy +Ds 1+

Ds&n*+DrEnP + Dyt + -+ (4.130)
is the determinant of [A],
B(&,n) =B+ B &+ BEén+Bn'+-- (4.131)

is the determinant of [A] when the third row is replaced by the load vector {R},
and Q(£,7) is the Fourier transform of ¢(z,y).
4. The limit analysis with respect to h — 0 is performed and the following coeffi-

cients are defined:

a = % fori=1—-3, )=1-3 (4.132)
N = g-;- fori=d—8 j=1-5 (4.133)
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Note that B, is the first non-zero term of B(£, n) and does not depend on & and 7.

Neglecting derivatives of higher than fourth order, we obtain the general equation:

(& +amén+asn?)Us+

ME+X0En+ 0P+ M +An) U =0 (4.134)

Denoting w(z,y) = ua(z,y), equation (4.134) has the following form after perform-

ing the inverse Fourier transform:

Pw H*w FPw
(5 gy * 7)) *

Htw Htw Hw Fw Fw
(,\1 S+ gty 0 gy T M T T W) =q (4135)
where o, ag, o3 and i, Mg, ..., As depend only on the material coefficients E;

defined before.

If the hierarchic plate model being evaluated converges to the proper limit, then
the coeficients o; must be zero. This is because all models must converge to the
solution of the problem of elasticity as A — 0. It has been shown (1] that the
Kirchhoff model is the limiting case for the infinite strip of isotropic material with
respect to h — 0. For the laminated strip (Chapter 3), which is a special case of the
laminated plate, the limit analysis showed that the governing differential equation
contains only fourth order derivatives. Therefore, unless the coeflicients o are zero,
the governing equation would be a second order partial differential equation.

When o; (i = 1, 2, 3) are not zero then the material properties have to be

adjusted. The coefficients A\; may require adjustment also, so that they will have
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the same values as those models that converge to the same limit as the theory of
elasticity with respect to A — 0.

Following this procedure, and using the symbolic manipulation program Math-
ematica !, it was found that the model characterized by (3 is not a member of the
hierarchy because o; # 0. However, making the transverse shear moduli constant
through the thickness, as it was done in the case of the strip, a; become zero.

In the case of the strip, closed form solutions could be obtained and the govern-
ing differential equations determined in terms of the material coefficients. Because
of the complexity of the problem in the case of the plates, it was impossible to
determine the coefficients o; and ); for all hierarchic models and for representative
stacking sequences, by other than numerical methods. The following approach have
been adopted: The results obtained for the laminated plate were tested numerically

for the following stacking sequences which are representative of practical problems:
1. Three-ply laminate: 90/0/90, h=1,
9. Three-ply laminate: —45/445/—45, h=1,
3. Three-ply laminate: —30/430/-30, h=1,
4. Five-ply laminate: 0/90/0/90/0, h=L.

For each stacking sequence the values of the (E] matrix were computed, and the

resulting system of equations are solved for w(z,y).

1Mathematica: A system for doing mathematics by computer. Wolfram Research Inc. (Version

1.2, July 1990)
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The model characterized by 3° required two modifications of material prop-
erties: One to satisfy the requirement that the oy = 0, the other to satisfy the
requirement of having the same values of A; as the other members of the hierarchy.
The 4! and 5 models did not require any modification of the material properties
to satisfy either requirement.
From experience acquired with the laminated strip, it was expected that by
making the transverse shear moduli constant through the thickness, the coefficients
o; would become zero. As in the case of the strip, the transverse shear moduli Q44

and Qss of each layer were made equal to the harmonic averages Qus and Qss:

N z Rz 1 : -1
Qu = (h b Onld) d ) (4.136)
. 9 rh/2 1 -1
QSS - (‘}; b mdz) (4137)

while Q45 was made equal to the average Qus:

Qus = %Ah/zQ‘ts(Z) dz. (4.138)

The other modification in the material properties needed for adjusting the values
of X in (4.135), such that they are the same as the other models, was obtained
from the condition that plane stress constitutive relations are used for each layer

(k). To accomplish that, the following modifications are sufficient:

(k) (k) Q(‘g) Q(";) .
Mgl _xsows =126 (4.139)
33

where the Qgc) are the material properties of the kth layer in the laminate coordinate

system. These modifications in the material properties are equivalent to those used
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for laminated strip models. The modification of the transverse shear moduli is the
counterpart of Eg constant in the laminated strip, while the modification in the
in-plane moduli is the counterpart of substituting E, by Ey — E}/E; in the &
model for the laminated strip (see Chapter 2).

The results of the numerical study are shown in Table 4.1 for the three hierarchic
models. Two sets of values are presented for the 5° model: One for the case in
which the modifications in the material properties discussed above are implemented
(3,); and the other for the case in which the modification in the shear moduli are
included but not in the in-plane moduli (3?).

These results indicate that the 3° model, without modifications to account for
the plane stress conditions in the constitutive equations (3 ), would converge to a
different limit as A — 0. When the full set of modifications are introduced (B),
the values of the coefficients ); are almost identical to those of the higher order
models. The differences observed in the values of A; for the 39, and 3! models are
very small and vary depending on the stacking sequence. The largest difference
(0.28%) occurs for the stacking sequence 3, in the coefficient \y. For the other
stacking sequences, the differences are below 0.01%. The largest difference between
the coefficients of the ' and 3 models (0.01%), occurs in the coefficients A, and
)\ for stacking sequence 2, while for the other stacking sequences the difference 1s

below 0.005%
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Table 4.1: Values of the Coefficients J; in [in-1b] for Four Stacking Sequences

MODEL | STACKING M A2 A3 A As
SEQUENCE
Jo 163634 0 222595 0 2022943
3, 90,/0/90 157802 0 208438 0 2014295
B! h=1 157816 0 208415 0 2014304
3 157810 0 208421 0 2014303
3 602293 | 1859309 | 3153926 | 1852309 | 602293
3, —45/ +45/ —45 | 595134 | 1859309 | 3153926 | 1859309 | 595134
B! h=1 595200 | 1856500 | 3154000 | 1856500 | 595200
3 505139 | 1856472 | 3153957 | 1856472 | 595139
3 1227055 | 2397643 | 2432075 | 822774 | 223028
B2, ~30/ +30/ =30 | 1219115 | 2397643 | 2417554 | 822774 | 216609
Ji h=1 1219140 | 2395101 | 2417636 | 820488 | 216629
3 1219119 | 2395059 | 2417578 | 820450 | 216613
Jo 1679640 0 222595 0 506937
I 0/90/0/90/0 | 1671512 0 208438 0 500585
B h=1 1671564 0 208331 0 500639
B3 1671565 0 208332 0 500638
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These results demonstrate that for the representative cases investigated, all the
models converge to the same limit as h — 0, provided that the material properties
of the 3 model are adjusted as discussed herein.

One important observation from this numerical study is concerned with the
classical plate model for laminated plates. The differential equation for mid-plane
symmetric laminated plates with the assurnption of plane stress conditions and that
normals to the middle surface of the plate prior to deformation remain straight and

normals after deformation (classical plate model assumptions) is given by [35):

Fw Fw Hw Otw Htw
D B +4D165:—v3_3—y + (2D +4D66)M5 +4D255;3_y—3 +D2279? =49
(4.140)
where:
D= [ 0. 2d 4.141
U—/_:;/,ZQUZ Z. (4.141)

The coefficients D;; are equivalent to E;. In the case of the 3° model, for
instance, the transverse shear moduli are made constant through the thickness and
they can be factored out from the expressions of Ei. In that case the following

relations exast:

Dll = E1 = /\1, D22 = Ee = )\5 (4142)
4D1654E2:—.')\2, 4D25'E4E5_=_)\4 (4143)
2D12 +4D56 = 2E14 +4E4 = /\3 (4144)

Therefore, there is a reasonable expectation that equation (4.140) is the limiting

case of the corresponding problem of elasticity provided the plane stress constitutive
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equations are used. When the three-dimensional constitutive equations were used,
the values of the coefficients ); are those given in Table 4.1 for the case 37 and the

proper limiting case is not obtained.

4.3 Sensitivity Study

The influence of the parameters introduced in each member of the hierarchic se-
quence of models is evaluated numerically in this Section. The unknown displace-
ment components u;(z,y), ¢ =1, 2, ..., are solved by means of an experimental
program developed for the solution of laminated plates, which is based on the
p-version of the finite element method.

Using this program, the examples problems described in Chapter 5 were solved
for various combinations of the parameters m, n, s and t. The strain energy of
simply supported 3-ply rectangular plates with uniform load was used to assess the
influence of the parameters, and the results are presented in Figures 4.1t04.8. The
material for the laminae is the same material used for the laminated strip problems,
with two stacking sequences, 90/0/90 (cross-ply laminate) and —45 ]/ +45/ — 45
(angle-ply laminate). The width to thickness ratio was kept at a/h = 4, and the
aspect ratio of the plate (b/a) was either 1 or 3.

The parameter n in the 5° model (see equations (4.58)-(4.60)) has no influence

on the solution. This is because 7 is absorbed in the unknown functions u(z, y)
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and uy(z,y) computed in the finite element solution when the transverse shear
moduli are made constant through the thickness of the plate.

The influence of the parameters m, n, s in the solution of a cross-ply laminate
corresponding to the 3! model is shown in Figure 4.1 for b/a =1 and in Figure 4.2
for b/a = 3. Figure 4.3 summarizes the results for both aspect ratios. In all these
figures, the vertical axis shows the strain energy relative to the one obtained solving
the same problem with a three-dimensional finite element program (see Chapter 5
for details). The horizontal axis gives the values assigned to the variable parameter
of each curve. The results indicate that there is no influence of the parameter n in
the results, while m and s have different influence depending on the aspect ratio of
the plate. For instance, an increase in s Improves the solution for b/a = 1, but does
the opposite for b/a = 3. A similar observation applies for the parameter m, but
in the opposite direction. An increase in m reduces the quality of the solution for
b/a = 1, but improves the solution for b/a = 3. Figure 4.4 indicates that there is
no influence of either one of the parameter in the solution of the cross-ply laminate
and for both aspect ratios.

The influence of the parameters m, n, s, t in the solution of a cross-ply laminate
corresponding to the 32 model is shown in Figure 4.5 for b/a =1 and in Figure 4.6
for b/a = 3. For bfa =1 an increase in m and ¢ increases the strain energy of the
solution, but while varying t produces a converging situation, the variation of m

conduces to an unbounded increase in the strain energy. For b/a =3, increasing
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¢ makes the strain energy to decrease, while increasing the value of m makes the
strain energy of the solution to decrease first (for m < 4) and to increase after the
value of m = 4. In both cases there is no influence of the parameter n and almost
no influence of s.

For the angle-ply laminate the results are shown in Figure 4.7. Again, there is no
influence of the parameter n and also no influence of s. The other two parameters,
m and ¢, have different influence depending on the aspect ratio of the plate.

All of the results presented in Figures 4.1 to 4.7 were obtained varying one
parameter at the time while the other three remained constant and equal to unity.
Figure 4.8 show the sensitivity study performed for the 5% model for twenty seven
different combinations of the parameters m, n, s, ¢ and for a square, cross-ply
laminated plate. In this case the strain energy of the solution is presented and a
band of + 3% around the reference solution is indicated. These results are also
shown in Table 4.2.

The results consistently indicate that the influence of the parameters included
in each model of the hierarchy is relatively small in terms of the strain energy of
the solution. Taking all parameters equal unity appears to be the logical choice

based on the results of the present sensitivity study.



Table 4.2: Sensitivity Study-3% Model.

(a/h = 4). Influence of m, n, s, t.

1

0

Simply supported 90/0/90 square plate

Case m 8 t Strain Energy || Case m Strain Energy

No. (x10%) No. (x10%)
1 1 11 0.7111145 15 5 0.7375296
2 1 1 1 0.7111145 16 2 0.7128474
3 3 1 1 0.7256553 17 3 0.7158803
4 1 5 1 0.7116944 18 4 0.7202610
5 1 1 5 0.7207993 19 6 0.7315889
6 5 1 1 0.7256553 20 7 0.7376230
7 1 5 1 0.7116944 21 8 0.7439399
8 1 1 5 0.7207993 22 9 0.7488515
9 1 5 5 0.7213676 23 10 0.7537713
10 1 1 5 0.7207993 24 1 0.7116491
11 5 5 5 0.7375296 25 1 0.7116989
12 5 5 1 0.7252634 26 1 0.7165587
13 1 5 5 0.7213676 27 1 0.7215842
14 5 1 5 0.7379180
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Sensitivity Study-Beta 1 Model
(b/a=1, ath=4, 90/0/90)

SE(HM)/SE(PROBE) [%]

96.06
S-CURVE
96.05 -
N-CURVE
96.04 |- x
96.03 -
M-CURVE
9602 1 1 H l 1
0 2 4 6 8 10 12

VALUE OF VARIABLE PARAMETER

Figure 4.1: Cross-ply square plate. Influence of m, n, s on the strain energy of

the solution.

Sensitivity Study-Beta 1 Model
(b/a=3, a/h=4, 30/0/90)

SE(HM)/SE(PROBE) [%]

>
97.14
M-CURVE
97.12 ¢ N-CURVE
Forps8
97.10 | 8 Net,Ss1
e Mot Se1
S-CURVE L
“ej. M=1, N=1
97.08 : ' L ! L S
0 2 4 6 8 10 12

VALUE OF VARIABLE PARAMETER

Figure 4.2: Cross-ply rectangular plate. Influence of m, n, s on the strain energy

of the solution.
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Relative Strain Energy-Beta 1 Model
(p=8, a’/h=4, 90/0/90)

b/a=1 b/a=3
96.06 97.20

96.04 | //——/: H97.17

96.02 - 497.14
96.00 I c 497.11
95.98 . 1 1 L . 97.08

0 2 4 6 8 10 12
VALUE OF VARIABLE PARAMETER

Figure 4.3: Cross-ply square and rectangular plate. Influence of m, n, s on the

strain energy of the solution.
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Figure 4.4: Angle-ply square and rectangular plate. Influence of m, n, s on the

strain energy of the solution.
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Sensitivity Study-Beta 2 Model
(b/a=1, a’/h=4, 90/0/90)
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Figure 4.5: Cross-ply square plate. Influence of m, n, s, t on the strain energy

of the solution.
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Figure 4.6: Cross-ply rectangular plate. Influence of m, n, s, t on the strain

energy of the solution.
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Relative Strain Energy-Beta 2 Model
(p=8, a/h=4, -45/45/-45)
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" Figure 4.7: Angle-ply square and rectangular plate. Influence of m, n, s, ¢t on

the strain energy of the solution.
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Figure 4.8: Cross-ply square plate. Influence of m, n, s, t on the strain energy

of the solution.
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Chapter 5

Laminated Plate Examples

Plate models must be evaluated with reference to the corresponding three dimen-
sional problem. Therefore the first task was to establish reliable reference solutions
of the model problems, viewed as three-dimensional elasticity problems. The com-
puter code MSC/PROBE was used for this purpose. It is important to remember
that we try to assess the errors of modeling, namely to be able to determine how
well each member of the hierarchic sequence of models approximates the solution
of the three-dimensional elasticity problem.

The quality of each reference solution was controlled by selecting the finite
element mesh such that the relative error in energy norm was low; observing the
convergence of the functionals of interest and verifying overall equilibrium. In some
cases, when the length-to-width ratio of the plate was increased, the estimated error

in energy norm also increased. In such cases the reference solution was used only to
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compute the transverse displacements. The error in strain energy (and consequently
in displacements) is the square of the error in energy norm. If the error in energy
norm for a given solution is 10% for instance, the error in the displacements should
be about 1%. However, the errors in the derivatives are more sensitive and cannot
be used for reference.

Using the finite element method as our solution tool means that we are intro-
ducing errors of discretization. If the errors of discretization are large, then it is
not possible to assess the errors of modeling.

The cases considered try to cover a wide range of combination of the parameters
that have influence on a plate problem. For instance, in a laminated plate it is

possible to vary:

the material properties,

e the number of layers,

o the stacking sequence,

e the thickness of each layer,

o the plate width-to-thickness ratio (a/h),
o the plate length-to-width ratio (b/a),

e the boundary conditions,

e the type of loading, etc,
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which make the number of cases to be analyzed very large, if one wishes to cover all
possible combinations. If only three variations of each one of the above parameters
were investigated, the total number of combinations would be 512. If for each one of
these cases we obtain the reference solution and the solutions for all three members
of the hierarchic models described in Chapter 4, the total number of analyses is
2,048. Finally, if for each one of the 2,048 cases, the solution is obtained for p-levels
ranging from 1 to 8, the total number of solutions is 16, 384.

In the examples analyzed in the following sections several parameters were se-
lected to be constant: The material properties of all layers are the same and only
one material is considered: the type of loading is not varied; all layers are of equal

thickness and the boundary conditions are homogeneous.

5.1 Description of Example Problems

Consider a rectangular plate of uniform thickness  and planar dimensions a and b,
composed of perfectly bonded elastic orthotropic layers, symmetrically distributed
with respect to the middle plane, (Fig. 5.1). A uniform load ¢(z,y) is applied as
a normal traction to the top (g/2) and bottom (g/2) surfaces of the plate, and all
layers in the laminate are of equal thickness, and are of a square symmetric uni-
directional fibrous composite material possessing the following stiffness properties,

which simulate a high-modulus graphite/epoxy composite:

E, =250x10°psi  Er =1.0x 10° psi
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Grr=05x108psi  Grr =0.2 x 10° psi
Vpr = v = 0.25

where L indicates the direction parallel to the fibers, T is the transverse direction,
and vy is the Poisson ratio (i.e., vi7 = —err/€LL, Where erT, €L are, respectively,
the normal strains in the directions T and L). These material properties were
selected from reference [18]. It is important to note, as was pointed out by Pagano
in [18], that the highly anisotropic nature of the selected material represent a severe

test for any laminated plate model.

h hal
y s}

Figure 5.1: Model problems: Notation.

When the L direction coincides with the z direction, we refer to it as the =0

orientation. For a three-ply laminate a designation 90/0/90 means that the central
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lamina is oriented with the L direction parallel to the global r-axis, and in the two
outer layers L is at 90° with the global z-axs.

As mentioned earlier, the reference solutions were obtained using the finite
element program MSC/PROBE, and the solutions for the plate models were ob-
tained with an experimental program developed during this investigation, in which
the algorithm described in Chapter 4 was implemented. In the reference solution
obtained with MSC/PROBE each layer was discretized as a three-dimensional el-
ement with orthotropic material properties. The solution was obtained for p-levels
ranging from 1 through 8. The solution corresponding to p = 8 will be used as the
basis for comparison.

The solutions corresponding to the proposed hierarchic sequence of models were
obtained using only one laminated plate element. The polynomial degree was varied
from 1 through 8 and the equilibrium equations were satisfied up to the second
power of 3 .

The model that satisfies the equilibrium equations up to the zeroth power of
3 was modified to satisfy the requirement of converging to the same limit as the
problem of elasticity with respect to h — 0, as described in Chapter 4. To accom-
plish that, the transverse shear moduli Qu and @ss of each layer were made equal
to the harmonic averages Q44 and st, while Q45 was made equal to the average

Qss. In the case of three layers, for instance, the harmonic averages are:

: 12\ 1 23\
Q44=3(—(_1)'+_(2')‘) Q55=3<W+—(§7> (5.1)
44 44 55 55
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and the average 1s:
A 1 (1) 9
Q45—§( +2Q ) (5.2)
The superscripts (1), (2) refer to the central and outer layer respectively. The

following changes were also introduced for each layer (k):

(8 o)
Q¥ =Qf - s (g i,j=1,2,6. (5.3)

These modifications in the material properties are equivalent to the ones introduced
for the laminated strip models. The modification of the transverse shear moduli
(5.1), (5.2) is the counterpart of Eg constant in the laminated strip, while the
modification of the in-plane moduli (5.3) is the counterpart of substituting E; by
E, — E2/E; in the 3° model for the laminated strip (see Chapter 2).

We will denote the modified model characterized by 3 with 37,. No modifica-
tions are necessary for the other members of the hierarchy as discussed in Section
4.2. The following normalized quantities are defined to present the results at a

given location (Zn, ¥n, Zn):

_ 1
(G, Ty, Toy) = E(Ura Ty, Toy) (5.4)
1 .
(Tzra 7'yz) = E(Tzza 7-yz) (5 O)

- Erh?

(ulv uy) = 3 (uI’ uy) (5 6)

qa

100 Er h? u(Tn,Yn, 0

U, = qaf Y, 0) (5.7)

where ¢ is the applied traction, h is the thickness of the plate and u,(Zn,¥n,0) is

the vertical displacement of the middle plane of the plate at £ = Zn, ¥ = Un-
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Two groups of problems are evaluated in the following Sections:

1. Cross-ply laminate with all four edges simply supported (only the transverse
displacement wu, is set to zero: soft simple support) and two aspect ratios
(b/a = 1 and b/a = 3). The influence of the number of layers and other
boundary conditions in the central deflection of square plates were also inves-

tigated.

2. Angle-ply laminate with all four edges simply supported, two aspect ratios
(b/a =1 and b/a = 3) and two ply orientations (—45/445/—45 and —30/430/-

30). Other ply orientations and boundary conditions were also considered.

For those problems in which the estimated error in energy norm was larger
than 5%, only the values of the displacements are reported. In those cases the
error of dicretization become too large to allow proper assessment of modeling
errors in terms of stresses. Table 5.1 shows the estimated errors in energy norm
at p = 8 for all cases considered in the following sections. Even though the errors
of discretization can be controlled by meshing and by p-extension, limitations of
the experimental computer program imposed certain restrictions. The reported
values of the estimated error in energy norm are the best that could be obtained
with the experimental code. For those cases in which the error in energy norm of
the plate models was larger than 5%, and the error of the solution obtained with

MSC/PROBE was also large, only the displacements were compared.



Table 5.1: Estimated Relative Error in Energy Norm (%) at p =8

MODEL a/h | b/a=1 | b/a=3 b/a=1 b/a=1 b/a=3
90/0/90 | 90/0/90 | —45/45/—45 | —30/30/-30 | —45/45/—45
3 0.15 0.34 0.35 0.29 473
ik 4 0.58 0.50 2.29 2.30 3.91
3* 0.67 0.50 2.57 2.56 3.44
MSC/PROBE 0.40 0.44 3.27 2.84 1.73
3° 0.35 1.82 2.36 2.77 5.66
gt 10 0.57 2.14 2.28 3.49 5.12
2 0.60 1.94 2.20 3.76 5.15
MSC/PROBE 0.19 1.01 1.94 1.55 3.70
3° 1.38 3.39 6.80 6.17 6.61
i 20 1.24 3.32 8.44 7.51 5.50
3* 1.16 3.32 8.39 7.49 5.53
MSC/PROBE 0.28 0.67 3.12 2.88 4.59
3° 1.89 1.49 13.20 14.09 9.15
ek 100 | 1.97 1.63 10.30 11.39 9.00
3 2.01 1.65 10.15 11.17 8.99
MSC/PROBE 0.08 0.07 15.61 14.03 11.26

132
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5.2 Cross-ply Laminate

In this Section the results for cross-ply laminated plates are presented. Two cases
were analyzed in detail: A three-ply square (b/a = 1) simply supported plate, and a
three-ply rectangular (b/a = 3) simply supported plate. For th&s.e cases the results
incdlude deflections, normal and shear stress distributions, and estimated relative
error in energy norm for the three hierarchic models and for the reference solution.

Also included is the influence of the number of layers in the end deflection of
a square plate with one edge clamped and the other three edges free. Finally, the
central deflection of a three- and a five-ply plate with two opposite sides simply

supported (soft simple support) are included.

5.2.1 Square Plate

The results for a three-ply orthotropic (or cross-ply, 90/0/90) simply supported
square plate are shown in Fig. 5.2 to Fig. 5.15 and summarized in Table 5.2. In all
cases the results are those corresponding to p = 8. The load consisted of a uniform
normal load g(z, y) half of which was applied on the top surface, half on the bottom
surface of the plate. The support conditions on all edges of the plate are those of
a soft simple support, i.e. only the transverse displacement is set to zero on each
edge (u, =0).

Figure 5.16 shows the mesh used for the reference solution of the cross-ply lam-

inate obtained with MSC/PROBE for the length-to-thickness ratio of 10. Due to



134
symmetry, only one fourth of the plate was considered in the analysis. Small ele-
ments were used near the edges of the plate to limit the influence of the singularities
coming form the boundaries. The same mesh configuration was used for all a/h
ratios. Figure 5.17 shows the deformed configuration.

Fig. 5.2 shows the central transverse displacement of the plate as a function
of the a/h ratio. For large a/h ratios all models yield similar results. As a/h
decreases, the 3° model underestimates the deflection while the B! and 32 models
remain very close to the MSC/PROBE solution. A very small difference between
the ' and * models is also observed in this case. See also Table 5.2, column
U.(a/2,a/2,0).

The in-plane displacements 4,(0,a/2,2), 4y(a/2,0,z) for two a/h ratios are
shown in Figures 5.3 to 5.6. The solution of the 3% model can only produce linear
variation for the in-plane displacements. For a/h =10 thus approximation is close
enough, but for a/h = 4 the approximation is very different from the reference
solution and the other members of the hierarchy. Note that the 3' model is in
excellent agreement with the reference solution, but can only produce piecewise
linear approximation. The 3% model on the other hand, gives results that are
almost indistinguishable from those of the reference solution.

The normal stress distributions &,(a/2,a/2, 2), 5,{(a/2,a/2,z) for a/h =4 and
a/h = 10 are shown in Figures 5.7 to 5.10. The (3% model underestimates the

maximum normal stress &, by 40% for a/h = 4 (Fig. 5.9) and 10% for a/h =10
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Table 5.2: Normalized Stresses and Displacements for a Simply Supported 90 /0/90

Square Plate (b/a =1)

MODEL a/h U, 7z Ty Taz Tyz

(a/2,a/2,0) | (a/2,a/2,h/2) (a/2,a/2,h/2) | (0,a/2,0) | (a/2,0,0)

a° 2.720 1.53 11.05 2.47 2.65

Bt 4 3.019 1.87 15.71 2.31 1.88

5? 3.051 1.88 17.55 2.26 1.87

MSC/PROBE 3.122 1.90 18.30 2.01 1.87

3° 1.037 4.98 79.04 4.80 7.24

gt 10 1.149 5.21 86.02 4.60 6.44

ek 1.156 5.24 87.67 4.63 6.41

MSC/PROBE 1.172 5.24 88.30 4.31 6.51

3 0.764 15.59 324.3 8.93 14.69

gt 20 0.796 14.66 330.3 8.70 14.18

32 0.798 14.67 332.0 8.72 14.13

MSC/PROBE 0.802 14.68 332.8 8.63 14.13
3° 0.670 351.2 8142 43.29 74.27

A 100 0.672 309.4 8098 42.77 73.83

32 0.672 309.3 8100 42.28 73.82

MSC/PROBE 0.673 310.4 8105 45.13 74.09
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Normalized Central Displacement
Three-ply Laminate (90/0/90)

3.50
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0.00 L 1 i SN S B |
2 20 200 2000

a’h Ratio

Figure 5.2: Simply supported orthotropic (90/0/90) square plate: The function
U.(a/2,a/2,0).

(Fig. 5.10). Those figures for the ' and 3* models are (14%, 2.6%) and (4%,
0.7%), respectively. For low a/h ratios, there is a big improvement over the 3°
model due to the presence of the piecewise linear terms in the displacement field
in the ' model and from the piecewise quadratic terms of the 2 model. For large
a/h ratios, the quality of the 3 solution greatly improves. As mentioned earlier,
low order models provide adequate response for large a /h ratios, but behave poorly
for low a/h ratios. The 7, stress distribution is very closely represented by all the

models for both a/h ratios (Figures 5.7 and 5.8).
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The transverse shear and normal stresses were computed by integration of the
equilibrium equations. The in-plane stresses were computed from the finite element
solution directly, that is by computing the first derivatives of the displacement
components, but equations (4.21), (4.22) and (4.23) were used for computing the

transverse shear and normal stresses:

_ 0o, (97'“,
T = / ( =+ )dz +G (5.8)
_ Oy aay
e = — A ( o )dz +C (5.9)
2 (01, OTyz
g, ——A ( B +79?) dz +Cs (5.10)

where Cy, C; and C; are integration constants determined from the stress condition
at the surface of the plate. For zero shear stress at z = +h /2 and zero normal stress

at z =0, we have:

_ 200, OTIy 5 2000 | OTuy . ,
_A ( )dg-ﬁ(axjuay)d,. (5.11)
[ sy aay 20Ty | Ooy\ .
_A ( ) 2 /(—622 +-—6y>d~ (5.12)
_ 072 BTyz 3
5, = —A ( g )dp (5.13)

The transverse shear stress distributions at the mid-section of two adjacent sides of
the plate are shown in Figures 5.11 to 5.14. Observe that there is only a very small
difference between the 3' and the 52 models. The similarity of shear stresses for
the A" and 32 models was observed in the case of the laminated strip also. To fully
reproduce the shear stress profile, a higher order model is required. It was shown in

the case of the strip that the 3° model is sufficent for producing excellent results.
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Nevertheless, the results given by the 5! and (32 models are very satisfactory. The
transverse normal stress at the middle of the plate is shown in Figure 5.15.
Figures 5.18 and 5.19 show the estimated relative error in energy norm as a
function of the number of degrees of freedom for p-levels ranging from 1 to 8.
Similar convergence is observed for all models and for the reference solution. Note
that in all cases the estimated relative error in energy norm is below 1% for p = 8.
The convergence rate is algebraic (i.e., the relationship between the energy norm
and the number of degrees of freedom is very nearly a straight line on a log-log
scale). This rate of convergence is governed by the singularities associated with the

four corners and the edges.
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In-plane Displacement
at x=0, y=a/2, z/h
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Figure 5.3: Simply supported orthotropic (90 /0/90) square plate: The function
,(0,a/2,z) for a/h = 4.
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Figure 5.4: Simply supported orthotropic (90/0/90) square plate: The function

iz(0,a/2, z) for a/h = 10.
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In-plane Displacement
at x=a/2, y=0, z/h
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Figure 5.5: Simply supported orthotropic (90/0/90) square plate: The function
i,(a/2,0,z) for a/h = 4.
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Figure 5.6: Simply supported orthotropic (90/0/90) square plate: The function

iy(a/2,0, z) for a/h = 10.
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Normal Stress
at x=a/2, y=a/2, z/h
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Figure 5.7: Simply supported orthotropic (90/0/90) square plate: The function
5:(a/2,a/2,z) for afh = 4.

Normal Stress
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Figure 5.8: Simply supported orthotropic (90/0/90) square plate: The function

3:(a/2,a/2,z) for a/h =10.
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Normal Stress
at x=a/2, y=a/2, z/h
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Figure 5.9: Simply supported orthotropic (90/0/90) square plate: The function
g (a/2,a/2,2) for a/h = 4.

Normal Stress
at x=a/2, y=a/2, z/h

z/h

-0.5

-0.333

0.167

YF°r'.a_’h=1§‘; o
- —— MSC/PROBE

-—— Beta2 L

0.5 ' ' -
-90 -45 0 45 90
Sigma_Y/q
Figure 5.10: Simply supported orthotropic (90/0/90) square plate: The function

g,(a/2,a/2,z) for afh = 10.
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Shear Stress
at x=0, y=a/2, z/h
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Figure 5.11: Simply supported orthotropic (90/0/90) square plate: The function

7,2(0,a/2,z) for a/h =4.
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Figure 5.12: Simply supported orthotropic (90/0/90) square plate: The function

7.2(0,a/2, z) for a/h = 10.
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Shear Stress
at x=a/2, y=0, z/h
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Figure 5.13: Simply supported orthotropic (90/0/90) square plate: The function

:T:yz(a/z, 0,z) for a/h =4.
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Figure 5.14: Simply supported orthotropic (90/0/90) square plate: The function

‘Fyz(a/2, 0, Z) fOI' a/h = 10.
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Normal Stress
at x=a/2, y=a/2, z/h
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Figure 5.15: Simply supported orthotropic (90/0/90) square plate: The function

5:(af2,a/2,z) for afh =4.

Figure 5.16: Simply supported orthotropic (90/0/90) square plate: Finite element

mesh for the reference solution (a/h = 10).
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5 v

X

Figure 5.17: Simply supported orthotropic (90/0/90) square plate: Deformed

configuration (a/h = 10).
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Figure 5.18: Simply supported orthotropic (90/0/90) square plate: Estimated

relative error in energy norm for a/h = 4.

b/a=1, a/h=10

Relative Error in Energy Norm (%)

100 ¢ "y
- N
10E
[ i BétaOm:
TEL vt Batal
» '-*" ‘Beta 2
" | —5— MSC/PROBE.
01 1 i lnllllll 1 L TS WS W W I} i 1 I N i 1
1 10 100 1000

Number of Degrees of Freedom
Figure 5.19: Simply supported orthotropic (90/0/90) square plate: Estimated

relative error in energy norm for a/h = 10.
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5.2.2 Rectangular Plate

The stress distribution at representative locations in a three-ply orthotropic (or
cross-ply, 90/0/90) simply supported rectangular plate (b/a = 3) are shown in
Figures 5.20 to 5.23. In all cases the results are those corresponding to p = 8 and
a/h = 4. The loading and support conditions are the same as for the square plate.

The results are also summarized in Table 5.3 for several width-to-thickness
ratios. The quality of approximation is similar to that obtained for the square plate.
Note that the approximation of the in-plane stress components is always better
than the approximation in the transverse shear stresses. Higher order models are
required to obtain a more precise shear stress distribution, as was shown in Chapter

3 for the laminated strip problem.

5.2.3 Other Cases of Cross-ply Laminates

The influence of the number of layers on the end deflection of a cross-ply square
plate with one side clamped and the other three free is shown in Fig. 5.24 for three
different a/h ratios. In all cases the fibers in the outer layers were kept normal to
the clamped edge of the plate. Also included in the figure are the results of the
deflection computed using a simplified beam formula, which is valid for the case
a/h — oo. According to reference [36], the end deflection of a cantilever beam of
length a and thickness A with uniform load ¢ is:

4

Uz
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Tuble 5.3: Normalized Stresses and Displacements for a Simply Supported 90/0/90

Rectangular Plate (b/a = 3)

MODEL a/h U, .. &y Fox Tyz
(a/2,b/2,0) | (a/2,b/2,h[2) (a/2,b/2,h/2) | (0,6/2,0) | (a/2,0,0)
G° 11.00 6.65 15.32 5.93 2.81
ik 4 10.76 6.72 13.28 5.46 2.18
3 11.00 6.88 13.64 5.42 2.18
MSC/PROBE 11.04 6.87 13.40 5.09 2.31
3° 8.421 41.75 100.4 14.92 7.89
B! 10 8.391 39.42 94.40 14.34 7.54
3 8.431 39.52 94.70 14.37 7.49
MSC/PROBE 8.441 39.59 94.09 14.04 7.70
3 8.014 166.7 403 .4 29.63 16.33
ik 20 8.010 155.7 386.6 28.94 16.12
3 8.021 155.6 386.8 28.96 16.09
MSC/PROBE 8.028 156.0 386.2 28.53 16.52
3 7.849 4144 10070 147.0 81.38
gt 100 7.849 3857 9709 144.1 80.27
3 7.850 3851 9703 144.1 80.27
MSC/PROBE 7.858 3867 9735 149.4 81.32
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where
Dy = / Ve Q 22dz 5.15
11 b2 11 . (5.15)

The deflection computed by the use of (5.14) is identified as ‘Beam (a/h — o).

The results indicate that when the number of layers increases then the bending
stiffness of the plate decreases to a limiting value. The property of the laminate will
be square symmetric but not isotropic [37). When the longitudinal and transverse
properties are equal, a material is called square symmetric. For the laminate this
means:

hj2

h/2
Dy = /__;/2 @n z2dz =Dy = _h2 Q2 2 dz. (5.16)

The influence of different boundary conditions in the central deflection of a
square plate is shown in Figures 595 and 5.26. Two opposite sides simply supported
and the other two sides free are considered in this case. The results are for a three-
and a five-ply laminate, and include the values of the deflection computed with
the plate models as well as with the previously evaluated strip models. As can be

observed both the plate and strip model yield similar results.
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Normal Stress
at x=a/2, y=b/2, z/h

z/h
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05
Sigma_X/q
Figure 5.20: Simply supported orthotropic (90/0/90) rectangular plate: The func-
tion 7,(a/2,b/2,z) for a/h =4.

Normal Stress
at x=a/2, y=b/2, z/h
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Figure 5.21: Simply supported orthotropic (90/0/90) rectangular plate: The func-

tion &y(a/2,b/2,z) for a/h =4.
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Shear Stress
at x=0, y=b/2, z/h
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Figure 5.22: Simply supported orthotropic (90/0/90) rectangular plate: The func-
tion 7,4(0,b/2,z) for a/h =4.
Shear Stress
at x=a/2, y=0, z/h
z/h

0.5

-0.333

0.167

0.167

- BetaOm
== Betaf

0.333

— Bem2

0.5 == *
0.0 15 3.0

Tau_YZ/q
Figure 5.23: Simply supported orthotropic (90/0/90) rectangular plate: The func-

tion 7y:(a/2,0,2) for a/h =4.
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Normalized End Displacement
Influence of Number of Layers

O 1 bt S 1 I I

3 30 300
Number of Layers

Figure 5.24: Orthotropic (90/0/90) square plate, one side clamped. Influence of

number of layers in U, (a/2,4,0).

Normalized Central Displacement
Three-ply Laminate (90/0/90)
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Figure 5.25: Three-ply square plate. Two sides simply supported: The function

U.(a/2,a/2,0).



154

5.3 Angle-ply Laminate

In this Section we present the results for angle-ply laminated plates. There are three
cases which are analyzed in detail: A three-ply square (b/a = 1) simply supported
plate with a stacking sequence —45/+45/—45, a three-ply square simply supported
plate with a stacking sequence —30 /+30/-30, and a three-ply rectangular (b/a = 3)
simply supported plate with a stacking sequence —45/+45/—45. As before, the
results include deflections, normal and shear stress distributions and estimated
relative error in energy norm for all three models and for the reference solution.
Also included is the case of a three-ply laminated square plate in which the

angle of the fibers in each layer was varied between 0 and 90°.

5.3.1 Square —45/+45/—45 Plate

The results for a three-ply simply supported square angle-ply laminated plate are
shown in Fig. 5.27 to Fig. 5.33 for the stacking sequence —45/+45/ —45. The
results are also shown in Table 5.4 for several a /h ratios. In this case the transverse
deflection computed for each hierarchic model shows a similar behavior as in the
case of the cross-ply laminate (Figure 5.27). Note however, that the difference
between the 3° model on one hand and the 3!, 3 models on the other is larger
than before. Also, the in-plane displacements (Figures 5.28, 5.29) and stresses

(Figures 5.30-5.32) for a/h = 4 show the same trend as in the cross-ply laminate.
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The 3° model always underestimates displacements and normal stresses, while the
3" and 3? models give much closer approximations.

Higher order models are required to obtain more precise shear stress distribu-
tions. The same situation holds for the transverse normal stress o, (Fig. 5.33)
which was computed directly from the finite element solution. The transverse nor-
mal stress can also be computed by integration of the equilibrium equations as
described for the cross-ply laminate, and better results are obtained.

Comparing Figures 5.34, 5.35 with Figures 5.18, 5.19, the rate of convergence
for the angle-ply laminate is not as high as in the case of cross-ply laminate. The
relative error in energy norm at p = 8 is now larger for the same number of degrees
of freedom. The simply supported angle-ply laminate represents a less smooth

problem than the cross-ply laminate.

5.3.2 Square —30/+30/—230 Plate

The results for a three-ply simply supported square angle-ply laminated plate are
shown in Figures 5.36 to 5.43 for the orientation —30/+30/ —30. In this case the
transverse deflection computed for each hierarchic model shows a similar behavior
as in the case of the —45/+45/—45 laminate (Figure 5.36). Note however, that
the difference between the 3° and the 3" model is larger than before, and that the
solution corresponding to the 32 model is farther apart from the 3' model. The

results are also summarized in Table 5.5 for several width-to-thickness ratios.
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Table 5.4: Normalized Stresses and Displacements for a Simply Supported —45/+

45/ — 45 Square Plate (b/a =1)

MODEL a/h U. oz Try Toz
(¢/2,a/2,0) | (a/2,a/2,h/2) (a/2,a/2,h[2) | (0,a/2,0)
30 2.410 5.69 4.28 2.18
gt 4 2.894 7.45 5.66 1.95
el 2.952 8.06 6.23 1.93
MSC/PROBE 3.007 7.94 6.05 2.02
Ji 0.994 32.59 26.25 4.11
gt 10 1.130 35.26 28.77 3.81
3? 1.147 36.12 29.59 3.77
MSC/PROBE 1.155 35.24 28.70 4.97
o 0.741 . ; ]
gt 20 0.783 - ; ]
3? *) 0.789 ; .
MSC/PROBE 0.793 - - -
3° 0.609 ; ; ]
st 100 0.613 - . _
g *) 0.613 ; ] ]
MSC/PROBE 0.615 - - -

(*) Estimated relative error in energy norm larger than 5% for all models
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The in-plane displacements (Figure 5.37), normal stresses (Figures 5.38, 5.39
and 5.40), and shear stresses (Figures 5.41-5.43) for a/h = 4 show the same trend
as before. Note, however, that in this case the approximation in the transverse
shear stresses (Fig. 5.41) is not as close to the reference solution as in the previous
cases. The characteristics of the exact solution near the boundaries requires the

use of higher order models if the shear stress distribution is of primary interest.

5.3.3 Rectangular —45/+45/—45 Plate

The results for a rectangular plate (b/a = 3) with ply orientation —45/+45/—45 are
shown in Figures 5.44 to 5.48. Even though the relative error in energy norm for
this problem is larger for the same a/h ratio than for the equivalent square plate
(see Table 5.1) the approximation for each hierarchic model is very similar to the
one obtained for the square plate with the same stacking sequence and for the case
af/h=4.

The numerical results included in Table 5.6 for different width-to-thickness ra-
tios, combined with the information provided in Table 5.1, are indicating that the
characteristic of the exact solution is less smooth than for the square plate. In this
case for a/h = 10 the estimated error in energy norm was already larger than 5%
and no shear stress values are included. However, in-plane normal stresses are less
sensitive than the transverse shear, and good convergence to the reference solution

can be realized.
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Table 5.5: Normalized Stresses and Displacements for a Simply Supported —30/+

30/ — 30 Square Plate (b/a = 1)

MODEL a/h U, 0z ay oz Pyz
(a/2,a/2,0) (a/2,a/2,h[2) (a/2,a/2,h/2) | (0,a/2,0) (a/2,0,0)
fid 2.374 8.47 3.54 3.05 1.91
Bt 4 2.806 11.11 4.61 2.71 1.88
3 2.897 12.29 5.04 2.69 1.84
MSC/PROBE 2.917 12.0 4.98 2.38 1.49
fiu 0.986 52.37 20.33 6.28 4.57
B/t 10 1.098 55.40 21.40 5.97 4.22
Jei 1.120 56.78 21.90 5.95 4.20
MSC/PROBE 1.123 55.90 21.57 6.01 3.64
B 0.750 - ; ] )
B 20 0.783 - - - -
g2 (*) 0.790 ; ) ) )
MSC/PROBE 0.792 - - - -
g 0.636 ; . ] ]
ik 100 0.638 - . - .
3? (*) 0.639 - ; ) ;
MSC/PROBE 0.640 - - - -

(*) Estimated relative error in energy norm larger than 5% for all models
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Table 5.6: Normalized Stresses and Displacements for a Simply Supported —45/+

45/ — 45 Rectangular Plate (bfa=3)

MODEL a/h U, o ay Tox Tyz
(a/2,b/2,0) | (a/2,b/2,h/2) (a/2,b/2,h/2) | (0,6/2,0) | (a/2,0,0)
g0 5.002 11.47 9.33 3.33 2.71
st 4 6.204 14.41 11.73 3.05 2.40
B3 6.333 15.37 12.58 3.04 2.38
MSC/PROBE 6.388 15.40 12.50 2.74 2.33
fod 2.572 72.48 62.09 - -
gt 10 2.843 75.08 63.98 - -
32 *) 2.875 76.20 64.96 - -
MSC/PROBE 2.852 76.94 65.27 - -
o 2.189 - ] . ]
ik 20 2.261 - - - -
3 (*) 2.270 ; ] ) )
MSC/PROBE 2.278 - - -
3 2.041 ; - ) }
st 100 2.044 - - .
3 *) 2.044 - ; ) .
MSC/PROBE 2.050 - - - -

(*) Estimated relative error in energy norm larger than 5% for all models
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53.4 Other Cases of Angle-ply Laminate

The influence of fiber orientation in the central deflection of a three-ply square
plate with two opposite sides simply supported (2-sides SS) and four sides simply
supported (4-sides SS) is shown in Fig. 5.49. In this case the a/h ratio was kept
constant at a/h = 10 an the orientation of the fibers in the central layer was varied
between 0 and 90°. The fibers in the outer layers were always at 90° with the fibers
in the central layer. The results for the (3 and 3' models are included for each
boundary condition.

When all sides are simply supported, the central deflection of the plate U; is
maximum when the central layer is either 0° or 90°. As may be anticipated the
minimum deflection occurs for 6 = 45°. When two sides are simply supported and
the fibers in the central layer run parallel to the supported edges (8 = 0°), the
deflection is minimum. As f increases so does the deflection, and the maximum

takes place for § between 60° and 70°.
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Normalized Central Displacement
Five-ply Laminate (90/0/90/0/90)
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Figure 5.26: Five-ply square plate. Two sides simply supported: The function

U.(a/2,a/2,0).

Normalized Central Displacement
Three-ply Laminate (-45/45/-45)

Uz
3.5 ﬁ
3 - . Bgta Om
25 |- - Beta
«— Beta:2.
ol .
¢ MSC/PROBE
15¢F
-
05
0 1 H i 1 | 1 i H i [ ‘ | i i JE
1 10 100 1000

a’/h Ratio
Figure 5.27: Simply supported angle-ply (—45/ + 45/ — 45) square plate: The

function U.(a/2,a/2,0).
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In-plane Displacement
at x=0, y=a/2, z/h
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Figure 5.28: Simply supported angle-ply (—45/ + 45/ — 45) square plate: The

function (0,a/2,2) for a/h =4.

In-plane Displacement
at x=0, y=a/2, z/h
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Figure 5.29: Simply supported angle-ply (—45/ + 45 | — 45) square plate: The

function ,(0,a/2,z) for a/h = 4.
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Normal Stress
at x=a/2, y=a/2, z/h
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Figure 5.30: Simply supported angle-ply (—45/ + 45/ — 45) square plate: The

function &;(a/2,a/2,z) for a/h =4.

Shear Stress
at x=a/2, y=a/2, z/h
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Figure 5.31: Simply supported angle-ply (—45/ + 45/ — 45) square plate: The

function 7y(a/2,a/2,2) for a/h =4
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Shear Stress
at x=0, y=a/2, z/h
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Figure 5.32: Simply supported angle-ply (—45/ + 45/ — 45) square plate: The

function 7,5(0,a/2,z) for a/h =4.

Normal Stress
at x=a/2, y=a/2, z/h
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Figure 5.33: Simply supported angle-ply (—45/ + 45/ — 45) square plate: The

function &.(a/2,a/2,z) for a/h =4
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Figure 5.34: Simply supported angle-ply (—45/ +45/ — 45) square plate. Esti-

mated relative error in energy norm for a/h =4.
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Figure 5.35: Simply supported angle-ply (—45/ +45/ — 45) square plate. Esti-

mated relative error in energy norm for a/h = 10.
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Normalized Central Displacement
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Figure 5.36: Simply supported angle-ply (=30/ + 30/ — 30) square plate: The

” function U,(a/2,a/2,0).

In-plane Displacement
at x=0, y=a/2, z/h
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Figure 5.37: Simply supported angle-ply (=30/ 4 30/ — 30) square plate: The

function #(0,a/2,z) for a/h =4.
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Normal Stress
at x=a/2, y=a/2, z/h
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Figure 5.38: Simply supported angle-ply (—30/ + 30/ — 30) square plate: The

function &.(a/2,a/2,z) for a/h =4.
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Figure 5.39: Simply supported angle-ply (—30/ + 30/ — 30) square plate: The

function &,(a/2,a/2,z) for a/h =4.
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Normal Stress
at x=a/2, y=a/2, z/h
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Figure 5.40: Simply supported angle-ply (—30/ + 30/ — 30) square plate: The

function .(a/2,a/2,z) for a/h =4.

Shear Stress
at x=0, y=a/2, z/h
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Figure 5.41: Simply supported angle-ply (—30/ + 30/ — 30) square plate: The

function 7:7(0,a/2,z) for a/h =4
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Shear Stress
at x=a/2, y=0, z/h
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Figure 5.42: Simply supported angle-ply (—30/ + 30/ — 30) square plate: The

function 7,.(a/2,0,z) for a/h =4.
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Figure 5.43: Simply supported angle-ply (—30/ + 30/ — 30) square plate: The

function 7y,(a/2,0,z) for a/h =4.
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Normalized Central Displacement
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Figure 5.44: Simply supported angle-ply (—45/ + 45/ — 45) rectangular plate:

The function U(a/2,a/2,0).

Normal Stress
at x=a/2, y=b/2, z/h
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Figure 5.45: Simply supported angle-ply (—45/ +45/ — 45) rectangular plate:

The function &,(a/2,b/2,z) for a/h = 4.
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Normal Stress
at x=a/2, y=b/2, z/h
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Figure 5.46: Simply supported angle-ply (—45/ + 45/ — 45) rectangular plate:

The function &,(a/2,b/2,z) for a/h = 4.
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at x=0, y=b/2, z/h
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Figure 5.47: Simply supported angle-ply (—45/ + 45/ — 45) rectangular plate:

The function 7,;(0,b/2,z) for a/h =4.
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Shear Stress
at x=a/2, y=0, z/h
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Figure 5.48: Simply supported —45/ +45 / — 45 rectangular plate: The function
7,:(a/2,0,z) for a/h = 4.
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Figure 5.49: Square plate. Influence of fiber orientation on a three-ply laminate:

The function U.(a/2,a/2,0).
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5.4 Conclusions

1. The hierarchic models for mid-plane symmetric laminated plates developed in
Chapter 4 have been tested by solving benchmark problems. Good correlation
between the proposed hierarchic sequence of models and a three-dimensional

reference solution has been found for a wide range of problems investigated.

2. All models converge to the same limit as the problem of three-dimensional
elasticity with respect to h — 0. Adjustment of the materials properties
of the model characterized by ° was required to satisfy this requirement.
The model characterized by 3° is the Reissner-Mindlin model, generalized for
laminated composites, when the modified material properties are used (also

known as first order shear deformation model).

3. For a fixed plate thickness, as more members were added to the hierarchy the
solution was closer to the reference solution. Better approximation is realized
for the displacements and for the in-plane stress components even for low
order members of the hierarchy than for the transverse shear stresses. At
the boundaries, higher order models are required, in general. In some cases
models higher than 3? may be necessary to approximate the shear stress
distribution as was demonstrated by the examples in connection with the

larminated strip in Chapter 3.
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4. The class of problems investigated clearly demonstrated the capability of
the proposed hierarchic sequence of models in approximating the solution of
the problem of three-dimensional elasticity to the desired degree of accuracy.
Thus, these models are suitable for obtamning both the structural and the

detailed response of laminated plates.



175

Chapter 6

Summary and Conclusions

The objective of this research has been to develop mathematical models for the
analysis of laminated plates. The choice of the proper model for a particular ap-
plication is problem dependent, that is, depends on the exact solution of the of the
corresponding fully three-dimensional problem, which in this this investigation was
the problem of three-dimensional elasticity; the goals of computation; the degree
of precision required, and the method by which the data of nterest are computed.

In general, the solution of the problem of three-dimensional elasticity in the
smooth interior regions is very close to the solution corresponding to the low order
model, whereas the solution near the boundaries is more complicated and thus
requires the use of higher models. Typically, investigation of structural response
can be performed with low order models but the investigation of strength response

requires high order models.



176
For these reasons models have to be chosen adaptively. If the models are simple
(classical plate model, first-order shear-deformation model) they are economical
and provide reasonable approximation to the structural response, but fail to provide
accurate representation of the strength response. If the model is more elaborate
(high-order shear-deformation models, discrete-layer models), they provide better
strength response at the expense of greater computational complexity, even for
those cases in which structural response was the only goal of the computation.
Hierarchic sequence of models make it possible to select the model best suited
for a particular analysis. In this investigation the question of how models should
be selected from a particular hierarchic sequence was not addressed. The main
idea is relatively simple. The transverse variation of the displacement functions
should be selected such that they are orthogenal or very nearly orthogonal in the
energy space. In that case the size of the field functions wuz)i, Uyji, Uz, measured in
the energy norm, will give an indication of the importance of the :th term in the
hierarchy. One can expect that as i increases the size of wz)i, Uy)i, Uz will decrease.
The derivation of a hierarchic sequence of models for laminated plates was
first outlined for the particular case of cylindrical bending (the strip problem)
and their performance was demonstrated on the basis of the degree to which the
equilibrium equations of the two-dimensional elasticity are satisfied. The powers
of the parameter 3, representing the degree to which the equilibrium equations

of are satisfied, have been used to identify members of the hierarchic sequence.
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The numerical implementation of this hierarchic sequence of models proved their
capability of approaching the solution of the problem of two-dimensional elasticity
to the required degree of accuracy.

Hierarchic models for mid-plane symmetric laminated plates were also devel-
oped based on a single parameter (. The powers of the parameter 3, representing
the degree to which the equilibrium equations of three-dimensional elasticity are
satisfied, have been used for identifying mermbers of the hierarchic sequence. The
selection of a displacement field based on a single parameter, combined with the
proper selection of the constants in the transverse shape functions, resulted n a
sequence of models in which the number of fields added for each increment in the
power of 3 is three. In this way the increase in complexity, as more members are
added to the hierarchy, was minimized.

In the interest of computational efficiency, the hierarchic sequence of models
has been extended downward to include the models characterized by & and 3.
This required a modification of material properties, which is analogous to the gen-
erally accepted modification of material properties used in the Reissner-Mindlin
model for homogeneous isotropic plates. In fact, the model characterized by 3°
s the Reissner-Mindlin model, generalized for laminated plates, when the modi-
fied material properties are used. In the special case, when the shear modulus 1s

independent of z, the hierarchic model is the Reissner-Mindlin model. The shear
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correction factor can be assigned arbitrarily since the requirements set for hierarchic
models are satisfied independently of the shear correction factor.

Good correlation between the proposed hierarchic sequence of models and a
three-dimensional reference solution (MSC/PROBE) has been found for a wide
range of problems investigated. The class of problems investigated clearly demon-
strated the capability of the proposed hierarchic sequence of models in approx-
mating the solution of the problem of three-dimensional elasticity to the desired
degree of accuracy. Thus the hierarchic framework described in this work allows
the development of reliable predictive capabilities for the structural and strength

responses of structural components made of laminated composites.
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Appendix A

Laminated Strip: Expansion of the Equilibrium

Equations up to the Third Power of B

Differentiating equations (2.31) to (2.33) with respect to 3 three times and letting

3 =0, the following equations are obtained for the real parts:
(Esdls) — (Estna) — Exthyy — Ead = 0 (A1)
(Esily) — Eshy — (Eadr2) — Esbr = 0. (A.2)
Start with (A.1) and from (2.54) and (2.74):
(Bsdly) = (Estw) + Exthy + Era

(Esdly) = (Eswbz)'—Ez{ [Es ?BFO]MO 2y }+E1 (a1 Fy +do y)
‘2

s = oo )- BB

Es¢hy = Es(h—aiFi—doF3) +a f [H’ (El - %) - %y} dy

Integrating once:
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1
a3 = d2+al{—ﬂ+'§;ﬁ[ﬂ)(

then, integrating again:
a3 = day + as Fo(y) + a1 Fa(y) + do Fa(y) (A3)

where:

Fily) = ﬁ {El'(t‘) f (El(t) - gg;) tdt — E(t)}dt. (A4)

From (A.2), and using (2.62) and (2.72):
(Esdly) = Eedhy + (Exdre) + Estpa
(Esls) = b/’ E—Ez— R-2ylq — Es(c1 +boF1) + b
a3 LA 1 Es 0~ Egy Y 6\ C1 041
+(Eagre) + Es (boF1 +c1)

integrating once:

E?
Ess =boﬁ {ﬁ [(El - ﬁ) Fy - %y} dy}dy + by + Eayr +d

b = b“Eafy{f[ F“‘%‘!:de}dy+b2—

b 2 Fz clgzymEBFO =
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ol

f{(&—%%) %y]dy}dy+%1‘“z}
B\ B d
TE } “BYTE

integrating again:

T4 e e e

-H)z/y( R+ )dy—cl/'y%ydy%—dﬁ%sy--{-f.
—

Because of symmetry d =0, and calling b3 = f, we finally have:

Yas(y) = boF5(y) + b2 Fi(y) — e1 F(y) + b3 (A.5)
where:
Fly) = ﬁ{_&—l('t_)f (ﬁ [(El(t)— ggg)ﬁb(t) ——%B—E%t] dt> dt
+%—F2(t)}dt- (A.6)

Additional transverse functions, to satisfy the equilibrium equations up to

higher power of 3 , are found following the same procedure described herein.
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Appendix B

Laminated strips: Computation of the

Transverse Functions for a 3-ply Laminate

The transverse functions Fy(y), Fi(y), Fa(y) and F3(y) are integrated for the 3-ply
laminate problem indicated in Figure B.1. The material properties are assumed to

be constant within each lamina.

AY
h2v ®
hy 4 - — —— —> X
ho § @_

Figure B.1: Three-ply laminate. Notation.
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a) Fy(y): from (2.39)

dt
Fﬂ(y) b E’e(t)’ (Bl)
For lamina 1, we have
Fify) =5

It is convenient to factor out a coefficient to avoid working with very small numbers,
so we will use the largest value of the material stiffness matrix on any lamina in

the laminate. Calling this quantity E, the new Fy(y) will be:

_ E,
Ry) = ERly) =gV

Furthermore the overbar can be dropped since the E,. multiplying Fy(y) can be
absorbed in the constant ao that multiplies Fy(y) in the expression for ¢o(y).

For lamina 2, we have:

ha /2
R = [ Las [ Zodi= £ﬁ+£&(y—ﬁ)

0 Ee /2 Eez Eg 2 Esy 2
or
Ec hl Ec EC
RO =gv+3 (-5

The expressions of Fy(y) for layers 1 and 2 can be summarized as follows:

Doy

where:
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_ hm(E E
=7 (Em - Esz) (B4)
E.
b) Fi(y): from (2.64) we have
_ Et) t
Ry = f <——E3(t)F6(t) +_—E3(t)> dt. (B.6)
Using the same factor as before, we can write:
_ P (EO E
Fi(y) —f (Ea(t)fb(t)+ A0 t) dt. (B.7)
For lamina 1:
By E E. By E. E. y2 2
Fi(y) = tdt = = = .
w=[(Eere) = (Bnrn) 7=
For lamma 2:
h1/2 EZI Ec Ec EZ‘Z Ec
F = tdt - t t| dt
w=[" (EErE) "tk [Exz(Pl+p2 It R, ]
or
h En ENt Ep ]
Fi(y) = gt (— —i) Ly
1(y) =0 +[ 2T )T TR ]m
Finally:
%0y
Ry) = { (B.8)
a1 +@y+ay
where
= 1L (B
® = 3E, (Em +1) (B.9)
_ bt (En  ENM _En M
e o 5)3 R (B-10)
Q@ = épl (B.11)

@ = l(ész, E) (B.12)
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¢) Fy(y): from (2.75), and using (B.2) and (B.8)

By) = ﬁ {EI(T) ﬁ [(El(t) _ %%) R(t) - %%t] dt - Fl(t)} dt. (B.13)

1
By = ﬁ{m A [(Eu—%)%—%]tdt—%tz}dt

il
e
——
tq|,_,

£

|

52

K
s
o] %

|

w3

<

The integration across lamina 2 is performed in a similar way as before, and we

finally get:
to y3
Ry)= (B.14)
ty +tay+t3y’ + Y’
where:
_ 1 To
to=3 ( - ) (B.15)
B m N AR B
h=h 8 (EG:) Q1) 2 (Es2 q2> 8 (E 3) 24 (B.16)
=1 _
t2 = E62 1 (Bl?)
1 Ta
3 5 (-E_e; - (h) (B18)
_Lfms
t=3 ( o= q3> (B.19)
1 EZ Eyn
=-{{E, -2 - = B.20
To 5 ( 11 E’31>p0 E:n} ( )
hi £ Ey | i EL\
n=rey T [(EIZ— E32> a3 Eyy - E32>p1 5 (B.21)
ry = En—"Eﬁ p (BQQ)
Es
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d) F3(y): from (2.76)

t
A= [ %%tdt. (B.24)
Performing the integration across lamina 1 and 2 we get:
20y’
Fi(y) = (B.25)
21+ 27 y2
where:
_ 1B
2 = 3% (B.26)
= [ _lim)p
n = [ 2 -3 Es.z] % (B.27)
1 By
= z—=—. B.28
z = 35 (B-28)

The integration of these and all other transverse functions can be performed nu-
merically, and for any number of layers. The direct integration for a 3-ply symmetric
laminate was performed to show the polynomial degree of some of the functions,

and to solve the example problems described in Chapter 3.
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Appendix C

Laminated Strip: Lamina Stiffness Submatrices

Consider the two dimensional model of a laminated strip shown in Figure C.lL

From equation (3.10) and (3.11), the stiffness matrix of lamina k is given by:

K = [ [ F ARl dyde G3Y

where (@] is given in (3.8) and [E]® by (3.12). When the equilibrium equations are
satisfied up the second power of 3, a total of 36 submatrices (only 21 are different)

are contained in (C.1). Each submatrix of (C.1) is obtained in the following way:

Q
gl = [ [ 10R QR QR (B9 Qn fdyde )
Qs

Using the mapping (3.6), from (3.7): dz = g df so we can write:

(K] = f Aym [ 11 Eik)Qn + B )Q31) +QF (E(k Qu + E Qal)}d?]df
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" 777

Figure C.1: Laminated Strip. Notation
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= L[ () ey B0 [T 00
+12

eBOL [ [T 0y v+ 03 L[ o

Evaluating the integrals across lamina k, and using the definitions of (K, [Ma]

and [Lq] given in Section 3.1, we finally have for [K1):

2 %
ol = ¥ E®
+—;— hi €[ M.

Similarly, the other submatrices of (C.1) are:

First row:
E‘gk) 2 2 k) T
[K12] = wa (yk+1 - yk) [Kst] + Ec(; h [Lst]

2 . 0k
[Kus) = 5B Hi[Ku + B8O (HalLu] + Hy| L") + 5 B8 Hy[ Mo
2 /4 :
(e} = B0 Hyl L] + 5 B9 Ho[ Kl + 5 B8 Huol Mo + B HulLu]”

2 , 14
[K15] = zﬂk) Hyy[ Ko + Eﬁk) (H35{Lst] + Hsg [Lst]T) + §Ee(;k) Hi7[ M)

(y2+1 - yz) Egk) (Kol + 'E%" (y2+1 - yl?:) ([Lst] + [Lst]T)
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2 ¢
[Kis] = B Haal L] + B Hys[ L] + B Hpo[Lol" + 5BV His[Ma]. (C8)

Second row:
[Keo] = 2 e B (K] (C9)
o] = 3B B {I] + B B[ Lol (.10
(] = B9 HiolLul + 2B Hu[ Kol (C.11)
[ Kus) = S Hi K + ED Hrl L (C.12)
(o] = 38 B[ ) + EL Hisl L, (C.13)

Third row:

(K] = 2B Bl + 9 H, (L] + L7+ 5ES M (€14
[Ksq) = %Ei” Hig[Ku] + B Hu LT + B His[Lat] + -g-Eé")ng[M,t] (C.15)

(5] = 2B Bual ] + (ol + HudlLul7) + 5 BV HalM] (€10
(Koo = 2B Hin o] + B89 Bl L + &0 Hial Lo + LBV oM. (C7)
Fourth row:
(Kl = £ oM, + B B (L +(L7) + PHWEPIK]  (C18)
[Kis] = %Eﬁ") Ho[ K] + B Hyg[ Lo + B8 Hua[La]™ + gEék)H%[Ms,] (C.19)
(i) = S HolFCo) + B9 (H[Lo] + HalLl") + SEP Hu(M). (C20)
Fifth row:

[Kss) = %Eﬁ"’Hm{Knl + E{Y Hy ([Lo] + (L") + gEé") He[M,)  (C21)
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2

(Kss] = 2 B Hygl K] + E) g £
5 e Hasl o] + B8O Hyo[ L) + EL H51[L3,]T+§E§")H52[M,t]. (C.22)

Sixth row:

2
[Kes) = .ézg")Hn[K,t] + {9 Hyy (L] + [La]") + §E§") Hu[Ma)  (C23)

where:

H = /—y yFody

Hy = f Fydy

Hs:/y (F)*dy
Yk

H= [ "FFd

Yk

H9 =/yk+ly_Fldy
Yk

Hy = /'y:m F, dy
Yk

Y
Hy= [ "F Fdy

Yk

H15=/uk+1F:{dy
Yk

H” _ /ﬂﬂﬂ E)' dy

Ho= [ "FFdy

Yk
k+1
Hyy = f F Fldy
Hu= [ F Fdy
Yk
H25 — /kayFa' dy
Yk

Hy = /” “'F Fydy
Y

= ["yEdy
Yk

H = k+1 Fldy

Yi

H=["RFdy

Yk

Ho=[""yFdy

Yk

Hm — /Yk+1 }-’11[ dy
Yk

Hp = fml (F))* dy
Yk

Hy = /”“‘ (F)? dy
Yk

Hie =/“+1Fl Fody
Yk
YVk+1

Hiz = F Fydy

Yk

Hy =/%+1H Fydy
Yk

Hy = k“F{Fsdy
n

H24=/“+lyF3dy
Jux

Hy =/yk+1F3dy
Vi

H28=/yk+ngF3'dy
Yk
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H29 — /yk+1 FO' E;dy H30 — /J/k+1 FD' F:;dy
Yk Yk

Hy= /:M (F3)’dy Hy = R Fdy
&

Yk

H33 _ /’yk+1 (E{)z dy H34 - /yHlng dy
Yk Yk

k+1 P k+1
H35 = y F2 dy H35 = FQ dy
Yk Yk
k41

Hu= [ Fjdy Hs= [ FFdy

Yk Yi

H39 — [chH FO F2’ dy H40 — /’Yk+1 Forozdy
k Yi

k41 ’ ' k+1
H41=/: F! F} dy H42=f F, Fydy
k Yi

k+1 ; k+1 ’
His = /’ F, F} dy Ho= [ "F Rdy
Yi

Yk
H45 — [iﬂ-l Fll F2, dy H46 — /’yk+1 (B)'Z dy
k Yi

H47 — k+IEF¥dy H48 — [kﬂ (Ez’)2 dy
k

Yk

H49 = i .Fz F3 dy Hs() = /yk+1 Fz F3’ dy
Yk

Yk

Hs =/yk+le'Esdy Hs; =/yk+lF2I Fy dy.
Yk Ve

These 52 coefficients have to be evaluated for each lamina of the strip. For the

3-ply laminate indicated in Figure B.1, the following values are computed.

1. For lamina 1, using (B.2), (B.14) and (B.25):
f1 /2 2 h:;‘ _ hi/2 _
Hl—/__:llﬁpoydy—?om H2—-/_:l/2poydy—0

hi/2 hy/2
= mydy=0 o= [ pdy=mh

-h/ 1



Mmi2 4 g, _ 2_i
H; = by DY dy =pp G
hi1/2
H7=f pidy =psh
—hy/
h1/2 3
Hy /::‘/2 qoy” ay

hy/
h/
= 2¢23dy =0
His /__;/2 QY ay
M2 ydy =0
Hls—/_:l/2 Z0yay =
hy /2 h3
Hw—/__;/ QoPoy 4y =qoPo 75

hi/2
— dy=0
His /__; 1 2poqoyay

1

h/2
H21=/+;2 QQOZOyde-—-O

_h
h1/2 2 f),i
H23=/:“/2 4qo 20y dy =q 2o 3
h1/2 2 _ ﬁ
H25=/:;‘/2 22()y d’y—Z() 3

hy /2 3
e dyu=0
Hyr /__; P Poy ay

1

hy/2 9 _ E:i
H29=/__;1/2 Doy dy = po %o B
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h1/2
He = [ pyydy =0

hi/2

hy/2 h:{
Hy /_ W2 DY =D g

M eydy =0
Hw—/__;/2 Qyay =

1

hi/2 2 2’1%
= 2 dy =q5 =
Hy, /_:1/2 2e0y) dy =03
M2 g 4 2ﬁi
Hy= /2 Gy dy=q 20
hi/2 3
Hig _hlﬂpoqoy Y
h

/2
Hy = /: 1/2 240 po y’dy =2H7

h1/2 4 _ h3
Hy = /:;1/2 o220y dy = qo 20 20

—h1/
h1/2 3
= dy =0
24 /:;1/2 ZYy ay
Mz g h?_st
26 — h/ 20y dy—Zo—l—z-— 5
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.H—/+ 3ty dy =to 11 H-ifwzt4d— o
A 0y ay =to 38 = _hl/zpo 0y ay =Pology
Ho= [ 3ptay*dy =0 Ho= [ potoy*dy =0
39—/__;/ Doloy ay 40—ﬁ1/2pooy y=
hl/ h3 h1/2
H41=/:1/ 3potoy?dy =poto— 1 Hu=/:l/2 Qotoy®dy =0
hy/ . hs h1/2 RS
H43=ﬁ 3qotoy dy=3q(>to§6 H44=/+ 2qotoy* dy =2qoto 2o 30
H—f'h‘/at Sy =0 /" £ dy =88
45—_1“/ Qloy aYy = Hy = b2 y—°448
h1/2 h1/2 h3
Hy = 3t2y°dy =0 H =’/-+ 3t dy =92 =%
o ,/-:n/? of ¢ * -h /2 ( Oy) y=9 " 80
hy /2 s hi/2 h3
H49=_/_-:.1/2 tozoy dy =0 Hso=‘/__:ll 2to 20y dy = 1o 2040
/2 5 h1/2

hi h
=/ 4 dy = —1 = | 3
Hs = a2 3tozy dy =3t % g5 Hs, o 6tozoy dy =0.

1

9. For lamina 2, using (B.2), (B.8), (B.14) and (B.25):

hy/2+he A A
1—/ (my +p2y*)dy = mz-Hw§
2 3 3
h h h
e s ae(ie -
_ hy/2+hs _ é?.
%—-WZ Rydy=p:

h1/2+h2 Ay
%=ﬁm (1 +pey)dy =prha + P25

h1/2+h2
m=/ pdy =p2ha

hia

hy/2+h2 A,
Hs = Al/ﬁ (1 +p2y)* dy =pihe +pip2 + 225_

hy/2+hs 5 A’Z
%=Am (1 +p2y) P2dy = pi2h2 + P25

hy /2+h2
= Ady=ph

1
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h1 /2+h2 _ A 2 A;
Hs—[n/2 (2 +2¢39) ydy = @2 5 +3073

_ [lrh 2 _qéy | @A A,
Hy, = /2 <Q1+Q2y+Q3y)ydy— 5 + 3 +qs3 1

4 4 5 5
with: A3=(%l-+h,2) _<’_221), A4=<-h§1-+h2) _<_}.L21>

h1/2+h2
Hyp = A /2 (g2 + 2q3y) dy = @ha + @3 A2
1

hy/2+hy 2 _ Ay A
Hu—-A/2 (q1+q2y+q3y)dy—q1h2+q22 +a3

B /2+h2 4
Hy» =/ /2 (g2 +2¢39)" dy = gaha + 22 B Az +§q§A1

h1

hy /24h2
Hy = / (91 + @y +asy’) (@ +20y) dy
hy1/2

A A
= quh+(206+3)F tash+as

h1/2+h2

Hy = / (Q1 + gy +Q3y2)2dy
h1/2

A3z

A
= ghy + @Al + (2014 +q;")—3—‘ + Q@3+ +q3

A4
5

hy /2+h2
Hys = / 2zydy =24
h1/2

h1/2+he
He = A (0 +@y+ay’) Er+py) dy

1/2
A A A
paihe + (P + aip2) 5 + (P13 + o) 5 + Py

hy [2+ho A A
Hy = A n  @tay + g )P dy = Ppaiha + e + P
1
hi/2+ha A, A
Hig = [1 . (teyllet 2sy)dy = p1gohas + (P22 + 201s) 5 + 2P
1 4
hl/'2+h2
Hy = p2(q2 + 2q3y)dy = pageha + P23

hy /2
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hy /2+h 2 2
Hm = _A/2 (QI + @Yy + @y )(21 + 22y )dy
1

A, A A
= qzihe + = 5 +(Q122 +q32) = L +Q2Z2—3 '+'<.7322‘A—4

3 4 5

h1/2+he 2 2 1
Hy = / , (@0 +ay’)2ny)dy = gnd + 3R + 5024

hy/
hy /2+hy A A
Hyp= | M (92 +2g59) (21 + 229*)dy = uzi by + @321 Ay +Q222§ +‘I3z273
1

1/2+ha 4
Hy = AA p (a2 + 2039) (222y)dy = g2224; + 3%224h
1
h1/2+hs A, A3

Hyy = - (21y + 2y )dy-zl—2-+227

hi/2+4hs 9 2
H25 = A /2 (222y )dy = §ZzA1

1

hy [2+hy A
Hoe = NDdy = zh —_—
2 11/2 (21 + 229%)dy = 21ha + 2, 3

hy /2+h2 A, A A
H27=/ \ (1 + p2y)(21 + 209" )dy = przihy + pon 2 5 Tha - +pn

hy/2+h2 2
Hyg = hi/2 (p1 + p2y)220ydy = pr2y Ay + §p222A1
ha/2+he A
o = / P21 + 229 )dy = pazihy + przp =
h1/2 3
h1/2+ho
H30=/ 2p222ydy=p222A2
h1 /2
hy/24hs
Hy = (21 + 20y%)*dy = 22hy + = 2122A1 + Zzé
h1/2 3 5

b1 /2+he o A
Hs, =/ M (21 + 229%) (220y)dy = 21204, + 22 23

_ h1/2+he 2 _4 2
Hsy; = A 12 (222y) dy = “3'22A1

h1/2+hs Ay A Aj
H;y = Al/z (tly +t2y t3y +t4y )dy = t17 +t2-§- +t3— 1 +t4%
hy/2+h A 2 3
Hys = / 1 2(tzy +2t3y° + 3t4y®)dy = t, 2 + St3A; + StyA;
h/2 2 3 4

hi/2+hy A, A
Hys = A p (t1 +tay +t3y® +t4°)dy = t1 by ‘*‘t?_ +t3?1 +t4%
1
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hy1/2+h2 2
Hy; = A M (ta + 23y + 3tay®)dy = tahy + 134, + t4 Ay

1

H38

hy /2+hs . 3
/h P (71 +p2y)(t1 + toy + ta3y® + tay’dy
1

A A
ptihe + (pite +pzt1)'—22 + (pits +p2t2)?1

As A
3 TRl

+(prts + pat3)

H39

1/2+h2
[/2 (p1 + poy ) (2 + 2t3y + 3t4y*)dy
1

A A 3
= pitehs + (2pits +p2t2)-5-23 + (3pits + 2P2t3)'?1 + sztz;As
hy /2+h2
Hy = A p (8 + tay + tay? + tsy®)p2dy
1

A, A A
tipehe + pate— 5 '*';tha.g1 + oty 43

hi/2+h2
H, = / \ po(ta + 23y + 3t4y?)dy = patohy + pats Ag + pats A,

S
I

hi/2+h 2 2 3
A B (@1 + @y + @y?)(t +toy +tay? + 14y’ )dy
1

A A
= qitihy + (qit2 +Q2t1)72 + (qit3 + got2 +Q3t1)"3—1
A
+(qits + gots + (]3152)73 + (gots + q;xfs)% + %Q%

el (o)
Hy = Ah;/w‘? (q1q2y + 3y°) (b2 + 2t5y + 3tay®)dy

Qitahe + (2q1ts +92t2)% + (3q1ts + 295t3 + gata)

+(3g2ts + 2‘13753) + 3%t4f}4

A
3
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h1/2+h2 2 3
Hy = [;/2 (g2 + 2g3y)(t1 +t2y +13y” + ey )dy
1

A
= qth+(@t+ 2‘13151)—22 + (qats + 2g3t2)

A
+(gats + QQSts)'ZS' + 2%&%

1/2+h, 9
Hys = I P (g2 + 2q3y)(t2 + 23y + 3tay Ydy
1

A A
= qolohy + (2qts + 2q3t2)_§2- + (3gats + 4413?53)-?1 + 6q3t4%
hy /2+h2
He = [z B (t +tay +tsy’tay’) dy
1

A
= 2hy +tita Ay + (20t + tg)—gl + (t1ts + tm)%ﬁ

+(2t5t4 +t§)é5i +t3t4/;5 +t2/};

h1/2+h2 2 3 2
Hy = A , (Tt tty + tay®)(ty + 2tsy + 3tay®)dy
1

A
= titohy + (2hits +t§)-2—2 + (tits + tots) Ay

A
+(2tots + t§)—2?- + 1yt Ay + ti%s-

h1/2+h2 2 9
Hs = / (t2 + 2ay + 3tay?)(t2 + 2tsy + 3tay*)dy

hi/2
A
= 2hy + 2tats Ay + (6tats +4t3) = 3 + 3ty As +9t2 A4

hy/2+h2 2 3 2
Hy = [)/2 (ty + tay + tay® +tay®) (21 + 225" )dy
1
Ay A A
= tiz1hs +t221 +(t172 +t321) 3 +(t2~2 +t441) 43
A4 As
tazg— +t42p—
+i322 5 + 1422 6
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hy [2+ha 2 3
Hy = Aﬂ (ty + toy + a3 +tay’) (222)dy
1

A
= t122A2 + 2t222-§1' + f322£;2 + 2t422%

hi/2+h2
Hy, A (t2 + 2tz + 3tay?) (21 + 220°)y

1/2

A A
= t221h2 + t321A2 + (t222 + 3t421)—3—1 +t322—é2 + 3&422%

hi/2+he 5 4 3
Hsy = A P (tg + 2ty + 3tsy )(2Z2y)dy =ty29A2 + §t322A1 + §t422A3.
1

The integration of these and all other coefficients necessary to compute the stiffness
submatrices can be performed numerically, and for any number of layers. The direct

integration was performed to solve the model problems described in Chapter 3.
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Appendix D

Laminated Strip: The Load Vector

The load vector will be computed for the three-ply laminate indicated in Figure D.1,

and for the case of the 3? expansion of the displacement functions as given in (2.77),

(2.78).

YT qx/2

P Y S S W N S N S S O

h/2 77 7 77 77 L2 LLLL L
:i;k—\—*% S S S S S ——— X

h/2 T 77777 L L L

T I R A I

qx/2

— 4 — 3

Figure D.1: Three-ply problem. Notation.
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The potential of the external forces was determined in Chapter 3, and is given
by (3.25):

b/ de+5 [ (e /2 de

but uy (€, h/2) = uy(§, —h/2) because of symmetry, then
= & [ e uie h/2)de 01

also from (2.78) and (3.3):

) =S HON 0+ R/ SN + D TENE: (D2

=1 1=1

For the case of g(£) =constant = g, using (D.2) into (D.1):

Flu) = ( [ SN, (€)dE + FR(h/2) f Zb‘”N (€)de

1=1 =1

wE(y [ SN E) D3

=1

but

[ m@de=1 [ dae)de =1

/_fm(f)d@—%;, /:1Nj(€)d£=0, j=4,5 . p+L

then:
Flu) =% ((bﬁ” Lo = 20y + R (/)0 + 8 - 242
2 NG NG

2
+Fy(h/2) (b +85 ~ —\/—gbg“))) (D4)
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or
f(u):[b(l)J {r(l)}+[b(2)J {r(2)}+Lb(3)J {T(S)} (D.5)
where:
) =0 K b
) = ) B
BO) =16 B B B

are the vectors of the unknown coefficients of the functions u,(z); and

M| = %‘fu 1 -2/v6 0.0
r®] = Fl(h/2)9§[1 1 —-2/v6 0-- 0

r®) F3(h/2)-qz—eL1 1 —-2/vV6 0---0

are the load sub-vectors associated with the above unknown vectors.
Using expressions (B.8) and (B.25):
h R\
F(hf2) = at+astdB(5 (D.6)
B\ 2
Fg(h/2) = 21+ 2 (-2-) (DT)

where qi, G2, g3, z1 and 22 depend on the material properties and thickness of
each layer of the laminate, and are given in Appendix B. The global load vector is

obtained assembling the load sub-vectors computed above. For the 3% model there

are six sub-vectors:

(RY = {l0] ") 10] 12 0] 1)
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This is the expression of the load vector for a 3-ply laminated strip with uniform

loading on top and bottom surfaces to be used in (3.28).
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Appendix E

Laminated Strip: Computation of Engineering

Quantities

a) Horizontal displacements. After the finite element solution is obtained, the u,
displacement component for the 3 model at any given point across the laminated

is given by:
uz(£,9) = (1aV]y + [aP] Fo(y) + (a1 Bay) {N(E)}

For the simply supported case, the horizontal displacement at the support location

(z =0, or { = —1) will be:
ue(-1,y) = 'y + P Fy) +ai” Fa(y): (E.1)

Note that N;(—1) = 1, and N(-1)=0, :=23 ...,pF 1, and only the

coefficient a; is included in (E.1) for each term of the expansion.
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For lamina 1 of the model problems, using the results obtained in Appendix B for
the integration of the transverse functions, we have:
ws(~1,y) = aly +alpoy + oty (E2)
For lamina 2:

ua(=1,9) = a0y +aP(p +p2y) +a (b + 2y + 8y +1ay) (E.3)

b) Longitudinal stress o;. To determine the longitudinal stress o, we use equation

(2.6) and (3.8) as follows:

e = P 2N {a)y+ gV (a®)} By + 3LV {o¥) B
o = o=y (1) Frw) + L) (B0} FG)

For the case By, = Es =0:

o, = Ee; + Eney

0:(6,y) = %El V] ({0} y+ {a®) Bo) +{a®} B)

+E(N) ({10} ) + O} W) (E4)

For the problem of the infinite strip described in Chapter 3, the longitudinal

stress at the symmetry section ({ = 1) are:

pt+l
ES N(E =1) (ay +aP Ry) +a” BY)
1=1

1o

O’z(l,'y) =

+B (8 F () + 1 BW) (E5)



For lamina 1:
[ P = W ®), .3
o:(ly) = FEny ME=D(a"y+amy+a toy’)
=1
+2 By (En b goy + B 20 y). (E.6)
For lamina 2:

p+l
o) = 2EaS NE=D[ay +a o +py) ol ey 46
Z\H e H 4 ] ]

1=1

+ta )] + Ep [bgz) (g2 +2q3 y)+2 bgs)zz 3}] . (E.7)

c) Transverse shear stress 7zy. Let us consider the equilibrium equation (2.2):

Oy _ 00z
5 — oz (E.8)
integrating across the thickness
0o,
Toy = f 3 dy + g(z). (E.9)

From (E.4), we have

BN ({a®}y + (o} Boy) + (o} Blb)

LBV () )+ {7} F©)

4
or 2

then:

(§y) = —%LN"J ({am} f Eyydy + {?} AyEHFD(y)dy
+{a®) ['EFs)y) - 2oy ({o2) [ Eerid
+{69) ﬁ Ezfydy) +g(). (E.10)
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For the problem of the infinite laminated strip described in Chapter 3, the shear
stress 7,y at the antisymmetry section (¢ = —1) is obtained from (E.10).

For lamina 1:
T(-1,9) = —%LN" ) ({am} Eu?i; +{a®}m Eui’-; +{a®} Ento y{)
2N ({9} a0 B+ (B0} B 2od?) + 902)
o
it =1 ([0} + (e (o) 5
2B ({9} {90} 1) ¥ +lo)

For lamina 2:

1 h h2
ral-Ly) = — v () [Ea B2 - )+ | Bum g
h E ht
+Eap(y- =)+ =5 n0 - ‘)]+{a<3>}[Ent064
h h2 h3
+Eat(y - -§)+En—§( - M)+ B 20 - )

2

FEa 20~ 1) - BV () [Enoy

+E2 q(y - %) + By ga(y? - %.)] + {b(s)}[ 120%
2

+Ep 2(y? —%—)])+g()

where g(x) is determined with the condition of zero shear of the free surface:

sz(—l,h/Q) =

g(z) = %LN"J [{a(l)} (Enh; E12A2> {(2)} (Eupﬂ%z
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A h# A
+Ei2p1 he + Exz pz—22 + {a(s)} Ento 64—11 + Epp(tihe + fz-{,—2

2
+t3%l +t4%)>] +%LN’J [{b@)} (E'n qo%l +En(phto A2))

h2
+ {b(3)} (E21 20 _4!' + E22 22 A2)l .
These are the expressions that have been used to compute the displacements

and stresses reported for the first model problem described in Chapter 3.
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